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Overview

I am a mathematical physicist interested in statistical-mechanical models that give rise to quantum field
theories in their continuum limit. Typically, one begins with finite combinatorial-algebraic objects that
define the model in question, together with a map that takes objects on one scale to objects on another
scale, for example:

−→ −→ (1)

The iterative application of this ‘fine-graining’ map gives rise to a continuum theory from the finite
statistical-mechanical model. Under many circumstances, desirable properties of the continuum theory
can be endowed from the statistical-mechanical model. A main theme of this work is to identify and
exploit these circumstances to address open problems in the field.

My research activities fit within four well-established research programs:

1. Solving statistical-mechanical models equipped with integrable structure [1, 2].

2. The classification of subfactor planar algebras with small dimension [3, 4, 5, 6].

3. Constructing a conformal field theory corresponding to each finite index subfactor [7, 8].

4. Causal dynamical triangulations, a non-perturbative approach to quantum gravity [9, 10, 11].

Following a brief introduction, I elaborate on specific projects related to each of these programs.

Preliminaries: Planar-algebraic models

A planar algebra is an algebraic object that facilitates the ‘planar multiplication’ of vectors in a graded
vector space (Pn)n∈N0 [12, 13]. A basis for Pn consists of disks with n nodes on their boundary such
that when disks are combined (‘multiplied’), every node is connected to a single other node via non-
intersecting strings. Planar tangles are the diagrammatic objects, defined up to ambient isotopy, that
facilitate the combination of vectors, for example:

T =

D1

D3

D2
, PT (v1,v2,v3) =

v1

v2
v3

∈ P8, (2)

where PT : P2 × P4 × P6 → P8 is the multilinear map corresponding to the tangle T . To contrast, the
binary operation ◦ : A× A → A of an associative algebra A is a ‘linear multiplication’. In fact, planar
algebras possess linear multiplication tangles that endow each P2n with the structure of an associative
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algebra. Subfactor planar algebras are a particular class of planar algebras that encode the structure of
subfactors – inclusions of von Neumann algebras with trivial centre, whereby each P2n is isomorphic to
a finite-dimensional matrix algebra [12].

Planar algebras are particularly suited to the description of two-dimensional statistical-mechanical
systems as they naturally encode interactions in the plane. In the spirit of Baxter [2] and Sklyanin [14],
planar-algebraic models are described by a transfer operator

Tn(u) := . . .

u u u

u u u

u u ∈ P2n, u ∈ P2, u ∈ P4, u ∈ P2, (3)

such that for each m,n ∈ N the element Tn(u)
m (which corresponds to m transfer operators stacked on

top of one another) generates a m×n lattice and assigns the appropriate weight to each configuration of
the model. A planar algebra encodes the algebraic structure of a model if no proper planar subalgebra
can take its place. Considering a model with underlying Temperley-Lieb planar-algebraic structure [15],
we have

Tn(u)
m = + · · ·+ un+m ,

u =

u = + u

u =

. (4)

By construction, the partition function of the model is a function of the transfer operator, the details
of which depend on the specific boundary conditions. Taking, for example, periodic boundary conditions
and a model with an underlying subfactor planar-algebraic structure, the partition function is given by

Zn,m(u) := Ptrn

(
Tn(u)

m
)
, trn := . . . , (5)

where Ptrn is the analogue of the standard n × n matrix trace. In this case, a solution of the model
amounts to determining the eigenvalues of the transfer operator, from which the partition function and
other useful properties of the model can be determined [2].

Project 1: Integrable structure of planar-algebraic models

Background. A planar-algebraic model is integrable if the transfer operator satisfies

[Tn(u), Tn(v)] = 0, (6)

for all n ∈ N and for all u, v ∈ Ω, where Ω ⊆ F is a suitable domain. Expanding the transfer operator
in a basis of scalar functions, for example, performing a power series in u

Tn(u) =

∞∑
i=0

uiQi, integrability implies [Qi, Qj ] = 0, ∀ i, j ∈ N0. (7)

The commutative P2n-subalgebra generated by the transfer operator is denoted byH2n and is considered
the space of hamiltonians of the model. The space of integrals of motion (IOM) of the model, denoted
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by I2n, is the subalgebra spanned by elements in the algebra P2n that commute with each element in
H2n, and whose elements all mutually commute. Accordingly, we have the following sequence

H2n ⊆ I2n ⊆ P2n. (8)

Analysing the relative dimensions of algebras in this sequence provides insight into the underlying
integrable structure of the model, leading naturally to the following.

Question 1. What are the typical dimensions of H2n and I2n?

Question 2. Which models exhaust the integrable structure endowed from the underlying planar algebra,
i.e H2n = I2n?

Progress. A model with the simplest integrable structure has dimH2n = 1. In this case, the transfer
operator can be expressed as a polynomial in a single algebraic element, and we refer to the underlying
model as polynomially integrable. Together with Rasmussen in [16], we present a criterion for poly-
nomially integrable models when P2n is semisimple. We find that models for which dimH2n = 1, are
surprisingly ubiquitous, and present the following special case to illustrate.

Proposition. Let Tn(u) denote a transfer operator corresponding to an integrable model where P2n is
semisimple, if Tn(u) is diagonalisable then dimH2n = 1.

For subfactor planar algebras, where P2n are semisimple for all n ∈ N0, the diagonalisability of the
transfer operator follows from mild conditions on the underlying green-, blue- and yellow-operators in
(3) which, in many instances, are implied from integrability.

For the case dimH2n = 1, models addressed by Question 2 satisfy a rather simple criterion. Let
h ∈ P2n denote the generator of H2n, we have H2n = I2n if and only if h generates its own centraliser
in P2n. Also in [16], we find that a model with underlying Temperley-Lieb planar-algebraic structure
satisfies this criterion for n = 1, . . . , 17.

Future work.

• Construct models with dimH2n > 1. A consequence of the criterion in [16], is that these models
necessarily possess a non-diagonalisable transfer operator. Models with an underlying Temperley-
Lieb algebraic structure, for particular values of the loop fugacity, are known to admit this be-
haviour [17] and therefore are natural candidates.

• Establish maps H2n → H2(n+1) and I2n → I2(n+1) that facilitate analysis of continuum limits of
hamiltonians and IOM.

• While the planar-algebraic models introduced here are defined on the strip, it is straightforward
to extend this construction and define transfer operators on the cylinder. In this case much of
the details carry over. One key difference is that the algebraic structure is endowed from the
affine category of a given planar algebra which, in some basic cases, is infinite-dimensional. It
would be interesting to generalise the criterion such that it implies dimH2n = 1 within an infinite-
dimensional setting.

Project 2: Classification of Yang-Baxter integrable models

Background. A planar-algebraic model is Yang-Baxter integrable if (6) is a consequence of a set of
local relations satisfied by the blue-, green- and yellow-operators in (3), which include the celebrated
Yang-Baxter equation (YBE) [18, 19, 1]

u

v

=
v

u

, u =
∑
a∈B4

ra(u) a, =
∑
a∈B4

ya(u) a, (9)
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where B4 is a basis for P4, and we highlight that the red-operator is considered ‘auxiliary’ and is
parameterised independently from the green-operators. We are led naturally to the following.

Question 3. Which planar algebras give rise to Yang-Baxter integrable models?

Let us first consider planar algebras that do not give rise to Yang-Baxter integrable models. At the
level of the planar algebra the YBE imposes a set of Yang-Baxter relations (YBRs)

x

z

y =
∑

a,b,c∈B4

Ca,b,c
x,y,z

a

c

b , (10)

for some Ca,b,c
x,y,z ∈ F. Planar algebras that do not satisfy the appropriate set of YBRs do not admit a

Yang-Baxter integrable model, while the converse need not be true. A planar algebra will be called
YBR consistent if it satisfies the appropriate set of YBRs. Accordingly, we present a refined version
of Question 3: which YBR consistent planar algebras admit Yang-Baxter integrable models? As a first
step towards addressing this question, we consider the special case of YBR planar algebras.

A YBR planar algebra is a subfactor planar algebra whereby each triple of vector in x, y, z ∈ P4

satisfy a YBR [6]. By construction, each YBR planar algebra is YBR consistent, and is therefore a
possible class of planar algebras addressed by Question 3.

Question 4. Do all YBR planar algebras give rise to Yang-Baxter integrable models?

Progress. The simplest YBR planar algebra is the Temperley-Lieb subfactor planar algebra, which
has long been known to admit a Yang-Baxter integrable model [20, 21] (see also [22]). In fact, this is
the model presented in (4)! The next step up in complexity are the so-called singly generated YBR
planar algebras [6], whose basis B4 consists of the two canonical Temperley-Lieb basis vectors and one
additional vector, hence the terminology. Conveniently, singly generated YBR planar algebras admit
the following classification due to Liu [6].

Theorem. A singly-generated YBR planar algebra is isomorphic to a quotient of a Fuss-Catalan (FC),
Birman-Wenzl-Murakami (BMW) or Liu planar algebra.

The FC [23] and BMW [24, 25] planar algebras are both known to underlie Yang-Baxter integrable
models [26, 27], while until recently no such model was known to exist for the Liu planar algebra. In
forthcoming work with Rasmussen [28], we make use of the algebraic integrability framework [16] to
construct a Yang-Baxter integrable model with an underlying Liu planar algebraic structure, and in so
doing, provide a positive answer to Question 4 for the case of singly generated YBR planar algebras.

Future work.

• Extend Liu’s classification to doubly-generated (and possibly higher) planar algebras and establish
whether or not the resulting algebras underlie Yang-Baxter integrable models.

• For YBR planar algebras, YBRs are imposed for every triple of vectors in the basis. Under
some circumstances this is unnecessary, for example, when the green- and red-operators in (9)
have basis vectors for which the corresponding coefficients are zero. It is therefore likely that the
answer to the converse of Question 4, is no. In light of these expectations, it would be instructive
to find explicit examples of Yang-Baxter integrable models that do not have an underlying YBR
planar-algebraic structure.

• Informed by the presence or absence of these examples, find a class of planar algebras that incor-
porate such models and, in turn, develop a conjectured answer to Question 3.
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Project 3: Conformal field theories from planar algebras

Background. A conformal net is an axiomatisation of a chiral conformal field theory on the circle [29].
For our purposes, we highlight two key features (i) each closed interval I ⊂ S1 is assigned an algebra
A(I), acting on a Hilbert space H (ii) the action of the diffeomorphism group Diff+(S

1) on H, induces
a continuous unitary representation. Remarkably, conformal nets and subfactors share many common
features. In fact, it is possible to associate a subfactor to each conformal net [30]. However, the status
of the converse remains unclear. To clarify this point, Jones posed the following [7].

Question 5. Does each subfactor arise from quantum field theory?

In an attempt to answer this question, Jones introduced a machinery whereby planar algebras
provide ‘semicontinuous’ models of conformal nets [7, 8]. In these models, nodes on the exterior of
planar algebra disks approximate S1, which are restricted to correspond to k-adic partitions of S1 for
k ∈ N>1. Similarly, each I ⊂ S1, are restricted to be consistent with a k-adic partition of S1, and
index an algebra of operators within a planar algebra, which take the role of A(I). The action of these
algebras on the semicontinuous Hilbert space – the analogue of H, together with an element R ∈ Pk+1

satisfying the isometry condition:

R∗

R

. . . = (11)

induce a unitary representation of Thompson groups Tk [7]. Elements of Tk act on k-adic partitions of
S1 via scaling and rotations [31], and approximate elements of Diff+(S

1) to arbitrary precision [32].
If one could take a limit of the semicontinuous model such that the representation of Tk tends toward

a continuous representation of Diff+(S
1), one recovers a fully fledged conformal net. Jones himself

called into question the validity of this approach by presenting a ‘no-go theorem’ for a particular planar
algebra (with unique isometry R) where it was shown, for T2, that representations of rotations by dyadic
rationals are discontinuous [8]. This work was later supplemented by Kliesch and König who showed, for
a generic choice of the isometry R within a tensor planar algebra, that the corresponding representation
of T2 is almost surely discontinuous [33].

We highlight that both of these results specialise k = 2. To associate a subfactor to each conformal
net one simply has to find a single k ∈ N>1 and a single R ∈ Pk+1 such that the corresponding
representation of Tk is continuous. For subfactor planar algebras the dimension of Pk+1 grows at least
exponentially with k, in which case the isometry condition does little to constrain the element R as k
is increased. Given the number of possible elements R, one may consider whether some give rise to a
continuous representation of Tk, motivating the following.

Question 6. Are there conditions on R ∈ Pk+1 that imply that the corresponding representation of Tk

is continuous?

Progress. In forthcoming work [?], I deduce sufficient conditions that imply Jones’ machinery induces
a continuous representation of the rotation subgroup of Tk, and have found multiple solutions for the
Brauer planar algebra. The sufficient conditions have the flavour of YBEs, that is, they are local
conditions that imply a global property of the model. Moreover, these conditions directly avert the type
of arguments made in the no-go theorem [8]. Having established continuity of representations of the
rotation subgroup, showing continuity for all of Tk reduces to establishing continuity of the subgroup
Fk, whose elements act on k-adic partitions of [0, 1] via scaling [31].

Future work.

• Derive new solutions to the continuity sufficient conditions with different underlying planar alge-
braic structure.
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• Develop arguments and/or sufficient conditions to establish the continuity of representations of
the subgroup Fk.

• Combine arguments/sufficient conditions for continuity of representations of Fk with those that
are known for the rotation subgroup to produce continuous representations of Tk.

• Develop the limit that takes continuous representations of Tk to continuous representations of
Diff+(S

1).

• Inspired by YBR planar algebras which are endowed the algebraic structure of the YBE, we seek
to define planar algebras that are endowed the algebraic structure of the continuity sufficient
conditions.

Project 4: 1 + 1-dimensional causal dynamical triangulations

Background. Causal dynamical triangulations (CDT) is a non-perturbative approach to quantum
gravity, defined on a triangulated lattice, whose continuum limit is hoped to give rise to a predictive
physical theory [9, 10, 11]. Specialising to one dimension of space and one dimension of time, the
corresponding models are naturally described by two-dimensional statistical-mechanical systems.

A two-dimensional causal triangulation of the annulus is defined by a sequence of circular graphs
S1, . . . , Sm, where m ∈ N is the height, such that the annulus between two cycles is triangulated. For
example:

(12)

where on the left we present a triangulation and on the right the corresponding dual triangulation.
From the perspective of the planar-algebraic framework, the dual of a causal triangulation is highly
suggestive. The concentric circles of dual nodes indicate a natural multiplicative structure, while the
dual nodes themselves can be elevated to input disks – indicating a generality beyond pure triangulations.
Accordingly, we define the transfer operator

T (u) :=
∑
n∈N

∑
i∈Nn

o∈Nn−1×N0

.
.
.

.
.
.

. .
.

. .
.

. . .

. . .

. . .

. . .

. . .

. . .

u

u

u

u

o1

o2

on−1

on

i1
i2

in−1

in
,

. . .

. . .

ok

ik

u := u u u u
. . .

. . .

ik

ok

, (13)

where i := (i1, . . . , in) and o := (o1, . . . , on), such that the element T (u)m (which corresponds to m
transfer operators stacked radially) generates all (m + 1)-height causal triangulations of the annulus
and assigns the appropriate weight to each configuration of the model. By specialising the underlying
planar algebra and the corresponding elementary operators of P3 (appearing in the right-most equation
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in (13)), one defines a particular CDT model. For example, specialising to the tensor planar algebra
and fixing

u = u ••
•

, u = u •• • , (14)

one defines a pure gravity model. Considering more elaborate parameterisations is akin to introducing
a matter coupling to the purely geometric model (14).

Question 7. Which couplings give rise to a non-trivial interaction between matter and geometry?

Progress. In [34] together with collaborators, we define a dense loop model and a dilute loop model
on causal triangulations – both with an underlying tensor planar algebra structure. For reference, the
elementary operators of the dense model are defined

u = u ••
•

+ uα ••
•

, u = u •• • + uα •• • . (15)

We show that the dense loop model exhibits the same critical behaviour and large-scale structure as
the pure gravity model (14). In contrast, the dilute loop model is shown to exhibit a difference in both
critical behaviour and large-scale structure manifesting in a shift in the Hausdorff dimension of the
model. Accordingly, the dilute loop model experiences an influential interaction between matter and
geometry – providing an example of a model addressed by Question 7.

Future work.

• Continue to develop models with a non-trivial interaction between matter and geometry.

• Incorporating topology change into two-dimensional CDT has proven a relevant feature when
recovering known results [9, 35]. Moreover, planar-algebraic models are particularly amenable to
the modelling of various two-dimensional topologies. We seek to define a transfer operator that
includes contributions from configurations that experience topology change.

• There have been few examples of integrable structure within CDT, for instance [36]. We seek
develop sufficient conditions, inspired by the Yang-Baxter equation on the square lattice, that
imply models on causal triangulations are integrable.

Summary of research results

Project 1: Integrable structure of planar-algebraic models

• Developed a framework that assigns a statistical mechanical model to each planar algebra and
determined sufficient conditions for the model to be integrable.

• Introduced the notion of polynomial integrability, and provided sufficient and necessary conditions
for models to have this property.

• Showed that for the Temperley-Lieb planar algebra, the corresponding model is polynomially
integrable for all n = 1, . . . , 17. Also demonstrated that an 8-vertex model within the tensor
planar algebra is polynomially integrable for all relevant parameter values.

Output: [16]

Project 2: Classification of Yang-Baxter integrable models
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• Showed that a singly-generated planar algebra gives rise to an integrable model (of the form
developed in the previous project) if and only if the algebra is a YBR planar algebra.

• Demonstrated that these integrable models are also polynomially integrable.

• A crucial aspect of this classification was the creation of an integrable model for the Liu planar
algebra. To our knowledge, this is a completely new model, and the construction required the
generality of the integrability framework of the previous project.

Output: [28]

Project 3: Conformal field theories from planar algebras

• Identified a set of sufficient conditions that endow representations of the rotation subgroup of
Thompson’s group Tk with the property of continuity.

• For the Brauer planar algebra, determined an infinite set of solutions endowing continuity to
representations of the rotation subgroup of T2k+5 for all k ∈ N.

• Developed a notion of a discrete conformal net.

Project 4: 1 + 1-dimensional causal dynamical triangulations

• Proposed two new models of matter fields coupled to causal triangulations, a dense loop model
and a dilute loop model.

• Demonstrated that the dense loop model has the same critical behaviour and large-scale structure
as a purely gravitational model.

• In contrast, the dilute loop model was observed to have a different critical behaviour and large-
scale structure, resulting in a shift in the Hausdorff dimension of the model.

Output: [34]
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