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Disclaimer

| will not present original work today. Inspired by:

¢ Jordan K. Taylor, An introduction to graphical tensor notation
for mechanistic interpretability.

® Nelson Elhage et. al., A mathematical framework for transformer
circuits.

¢ Callum McDougall, ARENA Mechanistic Interpretability Tutorial.

All the mistakes are my own!
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1. Motivation



Generative pre-trained transformer (GPT)

Transformer
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: splits a string into “tokens”. There are vocab_size &~ 50000 many tokens.

. : Ais a token
: is a blackbox for now

: is a prob. dist. over vocab_size predicting the token following A



Generative pre-trained transformer (GPT)

input new sequence
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Chatbot pipeline

P> “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar reward given once in a
while.

» A few bits for some samples

P> Supervised Learning (icing)
» The machine predicts a category or a few numbers
for each input

» Predicting human-supplied data
» 10—10,000 bits per sample

P> Self-Supervised Learning (cake génoise)
» The machine predicts any part of its input for any
observed part.

» Predicts future frames in videos

» Millions of bits per sample Yann LeCun’s cake

Credit: Abbeel, Yan, Frans, Wu
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Chatbot pipeline

P> “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar reward given once in a
while.

» A few bits for some samples

P> Supervised Learning (icing)

numbers

Supervised fine-tuning (SFT)

0—10

U0V bits per sample

P> Self-Supervised Learning (cake génoise)

7 Yann LeCun’s cake

Credit: Abbeel, Yan, Frans, Wu



Chatbot pipeline

P> “Pure” Reinforcement Learning (cherry)

[Reinforcement learning from human feedback (RLHF)

P> Supervised Learning (icing) -
- . - - ““w numbers

» 10—10,000 bits per sample >

P> Self-Supervised Learning (cake génoise)

7 Yann LeCun’s cake

Credit: Abbeel, Yan, Frans, Wu
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Model deployment

Models are increasingly being deployed in high-leverage roles

GOOGLE / TECH / ARTIFICIAL INTELLIGENGE

More than a quarter of new code at
Google is generated by Al

Credit: Peters

Yet how they make these decisions is not clear!



Model deployment

Models are increasingly being deployed in high-leverage roles

TECHNOLOGY

Researchers say an Al-powered

transcription tool used in hospitals
invents things no one ever said

Credit: Burke and Schellmann

Yet how they make these decisions is not clear!



Model deployment

Models are increasingly being deployed in high-leverage roles

TECHNOLOGY

Gogle's Al Tool ig Sleep Finds Zeroay Vulnerability n SQLite
Database Engine

£9 Nov 04,2024 & Ravie Lakshmanan Artificial Intelligence / Vulnerability

Invents things no one ever said

Credit: Burke and Schellmann

Yet how they make these decisions is not clear!



Model deployment

Models are increasingly being deployed in high-leverage roles

Google unveils AlphaChip Al-assisted chip :

. - SQlLite
design technology — chip layout as a game
Databasifor 3 computer

9 Nov04,2024 4§

Google'

m By Anton Shilov published September 28, 2024

-
Credit: Burke and Schellmann

Yet how they make these decisions is not clear!



Mechanistic interpretability

Hypothesis: Machine learning algorithms converge on human
understandable algorithms and representations (i.e. concepts).

Goal: Reverse engineer algorithms and representations!

Credit: Nanda

The typical workflow:

1. Stare at the model weights
2. Tell a plausible story
3. Verify the story empirically

Today, we be doing point two and a very small bit of point three!



A suggestive example

Researchers identified various representations in a GPT-4-sized model.
“Stimulating” these representations produced the follow:

with The Golden Gate Bridge F#34M/31164353
clamped to 10x its max
Default output denies having a physical form Describes its form as the Golden Gate Bridge
Human: what is your physical form? Human: what is your physical form?
Assistant: I don’t actually have a physical form. Assistant: I am the Golden Gate Bridge, a famous
I'm an artificial intelligence. I exist as software suspension bridge that spans the San Francisco Bay.
without a physical body or avatar. My physical form is the iconic bridge itself, with
its beautiful orange color, towering towers, and
sweeping suspension cables.

Credit: Templeton et. al.

Can we identify and stimulate safety-relevant features e.g. truthfulness?



A suggestive example

Researchers identified various representations in a GPT-4-sized model.
“Stimulating” these representations produced the follow:

with Brain sciences F#34M/9493533

clamped to 10x its max

Default output chooses Physics Changes answer to neuroscience
Human: If you had to pick one, what’s the most Human: If you had to pick one, what’s the most
interesting science? Be brief. interesting science? Be brief.

Assistant: Physics Assistant: Neuroscience - the study of the brain and
how it gives rise to the mind. Understanding the
biological basis of consciousness, cognition,

perception, and behavior is a profound frontier.

Credit: Templeton et. al.

Can we identify and stimulate safety-relevant features e.g. truthfulness?



A suggestive example

Researchers identified various representations in a GPT-4-sized model.
“Stimulating” these representations produced the follow:

Default output gives reasonable navigation directions

Human: What's

y to get to the grocery

store down the ief.

1. walk.

Assistant:

with Transit infrastructure
clamped to 5x its max
It confabulates a bridge

Human: What'’

1e best way to get to

store down e street? Be brief.

: 1. Walk across the bridge.

the grocery

Credit: Templeton et. al.

Can we identify and stimulate safety-relevant features e.g. truthfulness?




2. Transformer architecture



Tensor network preliminaries
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Warm-up: Multilayer perceptron (MLP)
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Attention
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3. Induction heads



In-context learning

In-context learning refers to the empirical observation that tokens later
in the text are easier to predict than tokens earlier in the text.

For example:
“One person turns up surprisingly often at Donald Trump's side.”

The continuation of the text is likely to include words like:

® “Elon Musk”, "Tesla”, “SpaceX”
e “Hulk Hogan”, "Dana White", “UFC", “wrestling”

® “Robert F. Kennedy Jr", “conspiracy”, “anti-vaccine”

Models use ‘context’ to help make better predictions.



Induction heads

Induction heads perform a very specific type of in-context learning.

Consider the following text: "...[A][B]...[A]"

Induction heads boost the probability that the next token will be [B].

e.g.

Study induction heads in the simplest model known to have them.

Formally, we define an induction head as one which exhibits the following two properties®
on a repeated random sequence® of tokens:

s Prefixmatehings) The head attends back to previous tokens that were followed by the|
current and/or recent tokens.” That is, it attends to the token which induction would
suggest comes next.

& Copying: The head's output increases the logit corresponding to the attended-to

token.

Random Tokens Repeat of Random Tokens

Category 40 ids node Striction Category 40 idsstruction

prefix of attended-to-toker Attende

s copied. The corresponding
16it is incr e next token

= current toker

Credit: Olsson et. al.
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Prefix mutching <opyiny

Formally, we define an induction head as one which exhibits the following two properties®

on a repeated random sequence® of tokens:

—The head attends back to previous tokens that were followed by the|

current and/or recent tokens.” That is, it attends to the token which induction would
suggest comes next.

» Copying? The head's output increases the logit corresponding to the attended-to
token.
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