Towards continuous representations of Thompson groups T_k

Xavier Poncini, PhD candidate

The University of Queensland

AustMS, 2022

Question (Jones 2017)

Does each subfactor (planar algebra) give rise to a conformal field theory?

A conformal net consists of (i) a Hilbert space \mathcal{H} , (ii) a von Neumann algebra $\mathcal{A}(I)$ on \mathcal{H} for each open interval $I \subset S^1$, (iii) a continuous unitary representation U of $\text{Diff}_+(S^1)$ on \mathcal{H} . Subject to:

Isotony:
$$\mathcal{A}(I) \subseteq \mathcal{A}(J)$$
if $I \subseteq J$ Locality: $[\mathcal{A}(I), \mathcal{A}(J)] = 0$ if $I \cap J = \{\}$ ovariance: $U(\alpha)\mathcal{A}(I)U(\alpha)^* = \mathcal{A}(\alpha(I))$ $\alpha \in \text{Diff}_+(S^1)$ Positivity: $\text{Spec}(U(\rho)) \subset \mathbb{R}^+$ $\rho \in \text{Rot}(S^1)$

Planar algebras

Definition

An (unshaded) **planar algebra** P is a collection of vector spaces $(P_n)_{n \in \mathbb{N}_0}$, together with the action of planar tangles as multilinear maps e.g.

$$P_T: P_2 \times P_4 \times P_6 \rightarrow P_8$$

such that this action is compatible with the composition of tangles.

For example:

$$\mathsf{P}_{T}(\mathcal{O}, \mathfrak{S}, \mathfrak{S}) = \mathbf{O} = \mathbf{O} = \mathbf{O}$$

Subfactor planar algebras have an inner product on each $(P_n)_{n \in \mathbb{N}_0}$.

Semicontinuous models are lattice regularisations of conformal nets

 $(\mathcal{H}, \mathcal{A}(I)) \rightarrow (P, P)$ Planar algebra $\operatorname{Diff}_+(S^1) \to T_k$

Thompson group

The idea: semicontinuous models \rightarrow conformal nets

- The issue: Covariance: $U(\alpha)\mathcal{A}(I)U(\alpha)^* = \mathcal{A}(\alpha(I))$ $\alpha \in \text{Diff}_+(S^1)$ Reps. of T_k are projective and unitary, but not continuous!
- The dream: Develop sufficient conditions that endow reps. of T_k with the property of continuity

Outline

- 1 Thompson groups T_k
- 2 Representations of T_k
- 3 Continuity conditions

Thompson groups T_k

$\operatorname{Diff}_+(S^1)$ and T_k

Elements of $\text{Diff}_+(S^1)$ can be conveniently expressed as functions:

k-adic rational $\left(\frac{a}{k^n}\right)$ break-points and gradients given by powers of k.

Theorem (Zhuang 2007)

For every $f \in \operatorname{Diff}_+(S^1)$ there exists $g \in T_k$, and $\epsilon > 0$ such that

$$\sup_{x\in S^1} |g(x) - f(x)| < \epsilon.$$

Tree diagrams

Proposition (Brown 1987)

Elements of T_k can be expressed as pairs of annular k-trees.

For k = 2 we present the example:

Corresponds to:

 $\Psi = \Psi$

Tree diagrams

Proposition (Brown 1987)

Elements of T_k can be expressed as pairs of annular k-trees.

For k = 2 we present the example:

Corresponds to:

 $\Psi = \Psi$

Tree diagrams

Proposition (Brown 1987)

Elements of T_k can be expressed as pairs of annular k-trees.

Many pairs of annular k-trees give rise to the same element of T_k :

Forest categories

Denote by $A_{\mathfrak{F}_k}$ the category of annular *k*-forests:

• $\operatorname{Obj}_{A\mathfrak{F}_k} = \mathbb{N}$

• $Mor_{A_{\mathfrak{F}_k}}(m,n)$ are annular *k*-forests with *m* roots and *n* leaves Composition:

where $p \in Mor_{A\mathfrak{F}_2}(7,9)$ and $a \in Mor_{A\mathfrak{F}_2}(1,7)$. Define

$$\mathcal{D} := \bigcup_{n \in \mathbb{N}} \operatorname{Mor}_{\mathcal{A}\mathfrak{F}_k}(1, n)$$

as the set of all annular k-trees, and denote $\ell(f) := \operatorname{target}(f)$ for $f \in \mathcal{D}$.

Fraction notation

Define \sim on pairs of annular k-trees as $(a, y) \sim (b, z)$ if and only if there exist $r, s \in Mor_{A\mathfrak{F}_k}$ such that $(r \circ a, r \circ y) = (s \circ b, s \circ z)$

Proposition (Brown 1987)

Two pairs of annular k-trees (a, y) and (b, z) correspond to the same element in T_k if and only if $(a, y) \sim (b, z)$.

Denote by $[(c,x)] \equiv \frac{c}{x}$ the equivalence class (c,x)

$$\frac{p\circ c}{p\circ x}=\frac{c}{x},$$

where we interpret $p \in Mor_{A\mathfrak{F}_k}$ as being 'cancelled' in the fraction. Taking the trees from a previous slide:

Composition via fractions

Any $a, b \in \mathcal{D}$ admit $p, q \in Mor_{A_{\mathfrak{F}_k}}$ such that $p \circ a = q \circ b$, called a *stabilisation*:

Composition of functions can be expressed as the product of fractions

$$G \circ H = \frac{a}{b} \frac{c}{d} = \frac{q \circ a}{q \circ b} \frac{p \circ c}{p \circ d} = \frac{p \circ c}{q \circ b}, \quad \text{where } q \circ a = p \circ d,$$

where $G \circ H$ has the domain of H and the range of G.

Representations of T_k

Preliminaries

For convenience we will use the cutting convention:

Denote by Hilb the category of Hilbert spaces:

- $\operatorname{Obj}_{\mathsf{Hilb}}$ are Hilbert spaces V_n for each $n \in \mathbb{N}$
- $Mor_{Hilb}(V_m, V_n)$ are linear maps

where the inner product on each V_n can be expressed diagrammatically as:

Jones' action

Define the functor $\Phi : A_{\mathfrak{F}_k} \to \text{Hilb}$ • $\Phi_0(n) = V_n$ for all $n \in \mathbb{N}$ • $\Phi_1^R(p) \in \text{Mor}_{\text{Hilb}}(V_m, V_n)$ for all $p \in \text{Mor}_{A_{\mathfrak{F}_k}}(m, n)$ $p = \swarrow \bigwedge^{R} (p) = \swarrow^{R} (p) = \swarrow^{R} (p) = \bigwedge^{R} (p) =$

Construct the set A_{Φ} such that:

Continuity conditions

Continuous representations

Definition

A representation π is *continuous* if each sequence $(f_n)_{n \in \mathbb{N}} \subset T_k$ satisfies

$$\lim_{n\to\infty} \|f_n - \mathrm{id}\| = 0, \qquad \lim_{n\to\infty} \langle \xi, \pi(f_n)(\eta) \rangle = \langle \xi, \eta \rangle, \qquad \forall \xi, \eta \in \mathfrak{H}.$$

Denote by Rot_k the rotation subgroup of T_k , generated by:

$$\varrho_s: S^1 \to S^1, \qquad \qquad x \mapsto x + s \mod 1,$$

where s is a k-adic rational. Matrix elements can be expressed as:

$$\left\langle \frac{i}{x}, \pi_R(\varrho_{\frac{1}{k^r}})(\frac{i}{y}) \right\rangle = \underbrace{\gamma_{r}}_{y}^{x^*} = \left\langle x, \Omega_{k^r} y \right\rangle_{k^r}, \quad \Omega_n := \underbrace{\gamma_{r}}_{z}$$

where $x, y \in V_{k^r}$.

Xavier Poncini	Towards cont. reps. of T_k	AustMS, 2022	14 / 1

$$\langle \frac{i}{x}, \pi_R(\varrho_{\frac{1}{k^{r+s}}})(\frac{i}{y}) \rangle = \langle x, T_{k^r}(\mathfrak{R}^s(v))y \rangle_{k^r}, \qquad v := - \langle \!\!\!\! \rangle -$$

where $x, y \in V_{k^r}$, and

To illustrate, we present a small example where (k, r, s) = (3, 1, 2):

Towards cont. reps. of T_{ν}

$$\langle \frac{i}{x}, \pi_R(\varrho_{\frac{1}{k^{r+s}}})(\frac{i}{y}) \rangle = \langle x, T_{k^r}(\mathfrak{R}^s(v))y \rangle_{k^r}, \qquad v := - \langle \!\!\!\! \rangle -$$

where $x, y \in V_{k^r}$, and

To illustrate, we present a small example where (k, r, s) = (3, 1, 2):

Towards cont. reps. of T_{ν}

$$\langle \frac{i}{x}, \pi_R(\varrho_{\frac{1}{k^{r+s}}})(\frac{i}{y}) \rangle = \langle x, T_{k^r}(\mathfrak{R}^s(v))y \rangle_{k^r}, \qquad v := - \langle \!\!\!\! \rangle -$$

where $x, y \in V_{k^r}$, and

To illustrate, we present a small example where (k, r, s) = (3, 1, 2):

$$\langle \frac{i}{x}, \pi_R(\varrho_{\frac{1}{k^{r+s}}})(\frac{i}{y}) \rangle = \langle x, T_{k^r}(\mathfrak{R}^s(v))y \rangle_{k^r}, \qquad v := - \langle \rangle$$

where $x, y \in V_{k^r}$, and

To illustrate, we present a small example where (k, r, s) = (3, 1, 2):

$$\langle \frac{i}{x}, \pi_R(\varrho_{\frac{1}{k^{r+s}}})(\frac{i}{y}) \rangle = \langle x, T_{k^r}(\mathfrak{R}^s(v))y \rangle_{k^r}, \qquad v := - \mathcal{V}$$

where $x, y \in V_{k^r}$, and

To illustrate, we present a small example where (k, r, s) = (3, 1, 2):

$$\left\langle \frac{i}{x}, \pi_R(\varrho_{\frac{1}{3^3}})(\frac{i}{y}) \right\rangle = \left\langle x, T_3(\mathfrak{R}^2(v))y \right\rangle_3$$

Continuity conditions

Applying:

$$\lim_{s\to\infty} \big\langle \frac{i}{x}, \pi_R(\varrho_{\frac{1}{k^{r+s}}})(\frac{i}{y}) \big\rangle = \lim_{s\to\infty} \big\langle x, T_{k^r}(\mathfrak{R}^s(v))y \big\rangle_{k^r} \stackrel{(!)}{=} \big\langle x, y \big\rangle_{k^r}$$

Proposition

If there exists a $w \in P_4$ such that

$$\Re(v) = w, \qquad \Re(w) = w, \qquad \langle x, T_{k^r}(w)y \rangle_{k^r} = \langle x, y \rangle_{k^r} \qquad (\star)$$

for all $x, y \in V_{k^r}$, then

$$\lim_{s\to\infty} \left\langle \frac{i}{x}, \pi_R(\varrho_{\frac{1}{k^{r+s}}})(\frac{i}{y}) \right\rangle = \left\langle x, y \right\rangle_{k^r}.$$

A concrete realisation of (\star) is given by:

Xavier Poncini

Brauer algebra solution

The Brauer planar algebra $(B_n)_{n \in 2\mathbb{N}_0}$ is generated by the action of planar tangles on the space $B_4 = \operatorname{span}(\{ \bigcirc, \bigcirc, \bigotimes\} \}$, subject to:

$$(\mathbf{X}) = \mathbf{0} \qquad \mathbf{O} = \mathbf{0} \qquad \mathbf{O} = \mathbf{0}$$

Specialising k = 5 and $\delta = 1$ we have the solution $\mathcal{W} = \mathcal{W}$

This solution can be generalised to k = 2n + 5 for all $n \in \mathbb{N}_0$

$$\bigvee_{R} = \bigvee_{n} = P_{2n}$$

Theorem

For $R \in P_{2n+5}$ above, π_R is a continuous unitary representation of $\operatorname{Rot}_{2n+5}$.

Brauer algebra solution

The Brauer planar algebra $(B_n)_{n \in 2\mathbb{N}_0}$ is generated by the action of planar tangles on the space $B_4 = \operatorname{span}(\{ \bigoplus, \bigotimes, \bigotimes \})$, subject to:

$$(\mathbf{X}) = \mathbf{0} \qquad \mathbf{O} = \mathbf{0} \qquad \mathbf{O} = \mathbf{0}$$

Specialising k = 5 and $\delta = 1$ we have the solution

1

This solution can be generalised to k = 2n + 5 for all $n \in \mathbb{N}_0$

$$= \Psi^{n}, \qquad \qquad \forall P_{2n}.$$

Theorem

For $R \in P_{2n+5}$ above, π_R is a continuous unitary representation of $\operatorname{Rot}_{2n+5}$.

Xavier Poncini

Outlook

Outlook

Summary:

- Semicontinuous models of conformal nets via planar algebras.
- Limited by the continuity of the representations of T_k .
- Developed sufficient conditions that imply continuity of representations of the rotation subgroup of T_k .

Future work:

- Solve the continuity conditions for other types of planar algebras.
- Construct sufficient conditions that implies the continuity of representation of all ${\cal T}_k$
- Develop the limit that takes continuous representations of T_k to continuous representations of $\text{Diff}_+(S^1)$.

The end!