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Motivation

Subfactors appear in many interacting areas of mathematical physics:
@ tensor categories
quantum groups
vertex operators algebras

°
°
@ quantum field theory
@ knot theory

°

statistical mechanics — quantum integrability

Which subfactors encode the structure of quantum integrable models?

We will encounter subfactors in their incarnation as planar algebras.
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Subfactors

Subfactors

A factor is an infinite-dimensional von Neumann algebra with trivial
centre and a trace. For two factors My C My, My is a subfactor of M.

Further subfactors can be produced via Jones’ basic construction:

MyCc My C* M, Cc®2 M3 C ... where Mk+1 = <Mk, ek>
and (e1, e,...,e,) is a finite-dim. C*-algebra subject to the relations:
e,-2 = € = e}", €iej+1€6 = (5_26,', €iej = €€, ‘I' —j‘ Z 2

This is the Temperley—Lieb (TL) algebra which can be expressed:

| ~ |
e ~
R =S R AN Y
5 |V| ~ 1’ uf'\ Fo
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~
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Subfactors

The standard invariant

The standard invariant of a subfactor consists of the two towers:

Z(Mo) = Méﬂ/\/lo C M(/)ﬂ/\/ll C Méﬂ/\/lz C

U V)
Z(My) = MiﬁMl C M{ﬂ/\/’z C
where
M. N My ={x € Mp|xy =yx,Vy € M,}, ne{0,1}

are finite dimensional C*-algebras that include Temperley-Lieb algebras.

Thanks to a theorem of Popa, a subfactor can be reconstructed from the
standard invariant. The standard invariant stores the data of a subfactor.

Planar algebras provide a pictorial description of the standard invariant.
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Subfactors

Planar algebras

Definition

A planar algebra is a collection of vector spaces (Ap +)nen,, together
with the action of shaded planar tangles as multilinear maps e.g.

_) .1/

r=: / .C:, Pr:Ai4 XAy X A4 — Ag g
/\o\

such that this action is compatible with the composition of tangles.

Shaded planar tangle components:

strings < (7 input disks

// output disk

(\
marked intervals O loop

Planar algebras naturally describe interactions in two-dimensions!
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Subfactors

Planar algebras

Definition

A planar algebra is a collection of vector spaces (Ap +)nen,, together
with the action of shaded planar tangles as multilinear maps e.g.

Yy
T=4 o/ 2l PriAis XAy X A3 — Ay
13— N\
/ \o

such that this action is compatible with the composition of tangles.

Multilinear map action:

'y

Pr(vi,v2,13) = - (\/ C: € At
§ V3 —

/\o

Planar algebras naturally describe interactions in two-dimensions!
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Subfactors

Planar algebras

Definition

A planar algebra is a collection of vector spaces (Ap +)nen,, together
with the action of shaded planar tangles as multilinear maps e.g.

_) .1/

T=". o/ 12(: , PT : A1,+ X A27_ X A3’+ — A47+
N

such that this action is compatible with the composition of tangles.

Composition of tangles:

\/

N
>/ S=.\ —, TopS= //
’l\k /CI\ >/}\\

Planar algebras naturally describe interactions in two-dimensions!
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Subfactors

Planar algebras

Definition

A planar algebra is a collection of vector spaces (Ap +)nen,, together
with the action of shaded planar tangles as multilinear maps e.g.

_) .1/

Tr=- / .C:, Pr:Ai+ x Ay XAz — Agy
/\o\

such that this action is compatible with the composition of tangles.

Compatibility condition:
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Subfactors

Planar algebras

A planar algebra contains countably many associative algebras:

S N
o=t () M=t ()
AN AN
with M, + inducing a multiplication on A, + e.g.
N\
=t () =Puly). YxyEAn
AN

Under mild conditions the algebras are unital with units

i =P, (), Idoy = .)).4.(, I, = .)).4.(.
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Subfactors

Example: Temperley-Lieb planar algebra

Vector spaces:

Ao+ = span{ \ }a Ay = span{ \ }7 Axy = span{ ') ( ) ': }

Ao,— = span{ ' }, A - = span{ ' | }, Ay = span{ -) ( , -: }

Planar tangle action:

PTZ A27+ X A27+ — A37+

/ /
T:.\C) , pT<-:,-><>:.\9 =5
/o /

O VO T

Every planar algebra contains Temperley—-Lieb-like planar algebra!
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Subfactors

Example: Temperley-Lieb planar algebra

Vector spaces:

Ao+ = span{ : }, A4 = Span{ : }, Axy = span{ ') ( ) ': }

Ag— = span{ ' }, A — = span{ ' | }, A _ = span{ -) ( , -: }

Planar tangle action:

PT: A27+ X A27+ — A37+

/ /
\ e \ ©] =
T=. COPr(2.90) = =5
(1 )(‘ T( ) ) ’\‘,)( "\(
/\ /\
The shading of a planar algebra need not carry any non-trivial information.
In this case, it can be ignored and the planar algebra is called unshaded.
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Subfactors

Example: Temperley-Lieb planar algebra

Vector spaces:

Ay = span{ '

}, Alzspan{-l }, A2:span{ )( ,

) (

Planar tangle action:

PTZAQXA2—>A3

N\ G of o
T = ) 3 P : lv = |\ )

7 7\
The shading of a planar algebra need not carry any non-trivial information.
In this case, it can be ignored and the planar algebra is called unshaded.
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Subfactors

Example: Tensor planar algebra

Vector spaces:

AO,i = span{ . }, Al,i = span{ '

iy J
Ar 4 = span{ '

L]

/ k

i,j,k,l:l,...,N},

Planar tangle action:

PT : A1’+ X A27_ X A37+ — A47+
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Subfactors

Example: Tensor planar algebra

Vector spaces: ,,

Ao+ = span{ ' }, A+ = span{ '

i J
Ay = span{ '
1k

i,j,k,lzl,...,N},

Planar tangle action:

PT : A17+ X A27_ X A37+ — A47+

y A
_) -1/ L L N J '3 3
(\/ (:; 3 PT( )’ ': : ) :E :Z ) = Z \ @{_/3%(:%4

o i i,j=1 3 5
=
L\ 0
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Subfactors

Example: Tensor planar algebra

Vector spaces: ,,

Ao+ = span{ ' }, A+ = span{ '

Ay = span{ '

Planar tangle action:

PT : A17+ X A27_ X A37+ — A47+
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Subfactors

Example: Tensor planar algebra

Vector spaces: ;

Ao+ = Span{ ' }, A+ = span{ '

i,j,k,l:l,...,N},

A2,i = span{ '
"

Planar tangle action:

PT : A17+ X Ag,_ X A37+ — A47+

( y [ N ,-.‘ “e3

T=". Q/ > 4, PT('., :.372:..2)=NE LS
83— 3 4 B

/ \o i=1

The shading of a planar algebra need not carry any non-trivial information.

In this case, it can be ignored and the planar algebra is called unshaded.
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Subfactors

Example: Tensor planar algebra

Vector spaces:

Ao = span{ ' }, Al = span{ '

-

Azzspan{: )
"

i,j,k,/:l,...,N},
Planar tangle action:

PT:A1><A2><A3—>A4

(:\%_’-2\/7 372 37242):N-212:4'3
/‘\o =

The shading of a planar algebra need not carry any non-trivial information.
In this case, it can be ignored and the planar algebra is called unshaded.
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Subfactors

Subfactor planar algebras

Definition

A planar algebra (An +)nen, that is involutive, evaluable, spherical and
positive-definite is called a subfactor planar algebra.

There is an inner product on each A, 4, for example:

With multiplication tangle, each A, 4 is a finite-dimensional C*-algebra
with a Temperley-Lieb subalgebra.
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Subfactors

Subfactor planar algebras

Definition

A planar algebra (A +)nen, that is involutive, evaluable, spherical and
positive-definite is called a subfactor planar algebra.

There is an inner product on each A, 4, for example:

(a,b)o 1 == Il : a* well-defined

With multiplication tangle, each A, 4 is a finite-dimensional C*-algebra
with a Temperley-Lieb subalgebra.
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Subfactors

Subfactor planar algebras

Definition

A planar algebra (An +)nen, that is involutive, evaluable, spherical and
positive-definite is called a subfactor planar algebra.

There is an inner product on each A, 4, for example:

(a,b)ay = Il || €C,  dim(As+)<oo

With multiplication tangle, each A, 4 is a finite-dimensional C*-algebra
with a Temperley-Lieb subalgebra.
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Subfactors

Relation to subfactors

Recall the standard invariant of a subfactor My C M;:

C = M(l)ﬂMo - M(l)ﬂMl C M(,)ﬂMz -
U )
C = M{ﬂ/\/’l C M{ﬁ/\/lz -

The standard invariant is a subfactor planar algebra (Ap +)nen, Where
Ak’Jr = M(/) N My, Ak7, = M]/_ N My41
The subfactor planar algebra stores the data of a subfactor. We note e.g:

P”I“'IJ . Ak’+ — /4[(71’4,7 P”|~-| I | . Ak’+ — Ak+17+,
P -E (K| . Ak7+ — Ak,]_’,, P .|.| (B . Ak’, — Ak+1,+
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)
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Subfactors

Relation to subfactors
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) )
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Subfactors

Relation to subfactors

Recall the standard invariant of a subfactor My C M;:

C = A07+ — A]_,_;_ — A27+ —
U U
C = Ao’, - Al _ -

The standard invariant is a subfactor planar algebra (Ap +)nen, Where
Ak’Jr = M(/) N My, Ak7, = M]/_ N My41
The subfactor planar algebra stores the data of a subfactor. We note e.g:

e 3 :Ak’+ —>Ak71’+, P

-E 11 : Ak’+ — Akflyf, P .|.| 11 : Aky, — Ak+17+

| DAkt = Akt
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Subfactors

Relation to subfactors
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Subfactors

Relation to subfactors

Recall the standard invariant of a subfactor My C M;:

C = A0’+ C A]_’+ C A27+ C
T T
C = Ao7, C Al _ -

)

The standard invariant is a subfactor planar algebra (Ap +)nen, Where
Ak’Jr = M(/) N My, Ak7, = M]/_ N My41
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Subfactors

A subfactor planar algebra hierarchy

A k-generated planar algebra is a subfactor planar algebra generated by

Ao+ = span{ ' }, Ao — = span{ ' },

A4 :span{ ' | }, A — :span{ ' | },
A2,+:Span{ ')( ) ': ) 'x [ ')( }

together with the ‘what you see is what you get’ action of planar tangles.
For example, A> _ is generated by the following rotation tangle:

00 eg Ps(90)= 0 =

Xavier Poncini
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Subfactors
A subfactor planar algebra hierarchy

0-generated: Temperley—Lieb (TL)

Generators: {90,=}

Action: PT( \ }

1-generated: e.g. Fuss—Catalan (FC)

Generators: {90, =, 520}

Q '

Action: Pr(<, i
( )

Uni. Melb. MP Seminar 14 /24
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Subfactors

A subfactor planar algebra hierarchy

1-generated: e.g. Birman-Wenzl-Murakami (BMW)
Generators: {90,=2.%}

Relations: X — X = Q[.)( — ,:]7 5 :T'l

X
Action: Pr(:=, X)) = \\‘) =T J(
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Subfactors

A subfactor planar algebra hierarchy

1-generated: e.g. Liu

Generators: {9 (1, ==, 3¢ }

Relations: ﬁ = 9 ( —%-:, >0 =0, 2 =€,

+ braid-like relation

/
Action: P (X, () = \C)ﬁ =0
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Quantum integrability

Classical integrability

A classical system H(p,q) on a 2n-dim. phase space is integrable if:
{Qi,Q} ={Qi,H} =0, VQRi,QeQ:={Q,...,Qn}
and there are no functional relations among the integrals of motion Q;.

Classical integrable systems are:
@ Solvable — equations of motion can be determined explicitly

@ Non-ergodic — dynamics are constrained to subspace of phase space
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Quantum integrability

Quantum integrability

Naive attempt: {-,-} — %[7 ]

A quantum system H acting on a n-dim. Hilbert space is integrable if:
[Qi, Q] = [Qi, H] =0, VQRi,QeQ:={Q,...,Qn}

and the integrals of motion Q; are linearly independent.

Under this definition, all quantum systems are integrable! Diagonalise H:
H=> XP;, [P;, P;] = [Pi, H] = 0, Vij=1,...n
i=1

We seek a definition where such models are solvable and non-ergodic.

Idea: Examine the structure of the integrals of motion (IOM).
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Quantum integrability

Quantum integrability a la Caux and Mossel

To the increasing sequence of integers (Ng, Na, N3, ...) associate tower:
Hilbert spaces: (H(Nl), H(N2) gy (N3) )
where H(N=)  #(Na11) and A is an algorithm that acts as:

’H(Na) [EEN [-/(/Va)7 H(Na) — Q(Na)

A quantum system H acting on a Hilbert space H is integrable if it can
be embedded within a tower such that:

@ The number of IOM becomes unbounded i.e. lim, o [QM)| — oo

e Each Q,(Na) € QM=) can be embedded into (Q,.(Nl), Q,.(N2), Q,.(N3), )
and the number of nonzero matrix elements grows sub-exponentially

Idea: Observables are ergodic in systems with exp. growth. Exclude these.
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Planar-algebraic models

Transfer operators

Transfer tangles:
1 LI | 1 LIRO |
o=t CL10) ) Te=0CHae1)
A Y ¢
R-operator: Let B, 1 denote a basis for A,+ and uc QCC

Ri(u) = :i =Y ra(u)a, Ars = (Ri(u)|u e Q)p
acBs +
Homogeneous transfer operators:
| LI | 1 | IR |
WU —’u~--‘u ‘u —‘u~--’u
Too()=t (1 1-1) 1 Ta=0CI11)
T LT

Implies that the underlying planar algebra is unshaded. Ignore shading!
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Planar-algebraic models

Transfer operators

Transfer tangles:
(R R
ne{ CTUD
1 [ I |
R-operator: Let B, denote a basis for A, and ue Q CC
R(u)= Y =) rl(u)a, As = (R(u)|u € Qp

Homogeneous transfer operators:

1 | I |
T =+ 1 1-1)
¢

Implies that the underlying planar algebra is unshaded. Ignore shading!
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Planar-algebraic models

Planar-algebraic models

Let (An)nen, denote an (unshaded) subfactor planar algebra. Consider a
system described by a transfer operator T,(u) € A, satisfying

[Tn(u); Tn(V)] =0, VU,VGQQC.

The corresponding tower with (Ny, No, N3, ...) = (2,4,6,...) is given by:
Hilbert spaces: (A2, Ag, As, .. .)

where the algorithm A assigns hamiltonians and corresponding IOM as
0 . .
Tou) =Y u'QF
i=0

where H, = Qél) and Q, = {Qé'n) |i=2,3,...}.

n
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Planar-algebraic models

Yang—Baxter integrability

A model is Yang—Baxter integrable if the R-operator satisfies a set of
local relations that imply [T,(u), Th(v)] = 0.

For the homogeneous transfer operator a set is given by:
e Inversion identities

[ & )= | (i=1,2,3)
NN~

e Yang—Baxter equations

|
NAv= o meN N V= muN Nou= L mYN -
. (1 | =t |.1 s . (2 | =& |.2 , v 63 | =4 |.3
SNu— N INu— =N DA AN
|

+ boundary Yang—Baxter equations
Such a model is called homogeneous Yang—Baxter integrable (HYB).
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Planar-algebraic models

Yang—Baxter relation planar algebras

An (unshaded) subfactor planar algebra is Yang—Baxter relation (YBR)
if each triple x,y,z € Ap satisfy

X,Y,Z X,¥,Z

~N-z= v

[ & | — § : Ca,b,cl | o Ca,b,c cC
/ ¢

a,b,ceB;

YBR planar algebras naturally give rise to quantum integrable models

Quantum: Subfactor property — each A,, are Hilbert spaces

Integrable: YBR property — natural YB structure on As and As

The 0-generated (TL) planar algebra is YBR and admits a HYB model.
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Planar-algebraic models

Integrable models

Theorem (XP, Rasmussen '23)

A 1-generated planar algebra admits a homogeneous Yang—Baxter
integrable model if and only if it is Yang—Baxter relation.

Sketch: HYB = YBR

With the proto-1-generated planar algebra, no non-trivial solution to

N - S NAV= o meN
P AT 61 = and cdn | = | a
AN — DA AN

unless a YBR is imposed on the planar algebra.
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Planar-algebraic models

Integrable models

Theorem (XP, Rasmussen '23)

A 1-generated planar algebra admits a homogeneous Yang—Baxter
integrable model if and only if it is Yang—Baxter relation.

Sketch: HYB <« YBR
Theorem (Liu '15)

A 1-generated YBR planar algebra is isomorphic to a Fuss—Catalan (FC),
Birman—-Wenzl-Murakami (BMW) or Liu planar algebra.

N

FC: Sl =n(u) Y+ re()Z +re(u) 3 (Di Francesco '98)

Vi

BMW: :u: = ry(u) :-) (i + re(u) ::i + rg(u) :xi (Cheng, Ge, Xue '91)

Liu: \.ui =r(u) Y + re(u) ::i + rs(u) :ni (XP, Rasmussen '23)
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Planar-algebraic models

The story so far...

SPA

, l-gen.

?
L]
o [FC .
BMW Liu
0-gen.

.
TL

SPA — Subfactor planar algebras
YBR - Yang—Baxter relation planar algebras

HYB — Homogeneous Yang-Baxter integrable models
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, 1-gen. ,
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)
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0-gen.
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SPA — Subfactor planar algebras
YBR - Yang—Baxter relation planar algebras
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Planar-algebraic models

The story so far...

SPA
, l-gen. |
YBR . . '7.HYB
? . -
0-gen.
T.L

SPA — Subfactor planar algebras
YBR - Yang—Baxter relation planar algebras

HYB — Homogeneous Yang-Baxter integrable models
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Outlook

Outlook

Summary:

@ Subfactors encode quantum integrable models

@ Relevant 1-generated planar algebras are necessarily YBR
@ 'quantum’ «~ ‘subfactor’ and ‘integrable’ «~ "YBR’
o

1-generated planar algebras are just the beginning!

Future work:

@ Extend results to 2-generated planar algebras

@ Consider models described by an inhomogenous transfer operator
@ Cylindrical and annular models
o

Continuum scaling limit — subfactors and conformal field theories?
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The end!
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