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Motivation

Some suggestions that spacetime is not a continuum:

Aspects of the ‘It from Qubit’ program

Successes of loop quantum gravity and causal sets

Computational universe hypothesis

Question

Can we discretise our theories such that they are recovered under a
continuum limit?
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Planar algebras

Planar algebras

Planar tangles

R = D , S =

Graded vector space

(Pn)n∈N0

Multilinear maps

PT : P2 × P4 × P6 → P8

T =

1

3
2 , PT (v1, v2, v3) =

v1

v3
v2

∈ P8
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Planar algebras

Example: Temperley-Lieb planar algebra

Vector spaces

P0 = span
{ }

, P2 = span
{ }

, P4 = span
{

,
}
,

P6 = span
{

, , , ,
}
, . . .

Planar tangle action

PT : P4 × P6 × P6 → P8

T =

3

1

2 , PT

(
, ,

)
=
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Planar algebras

Example: Tensor planar algebra

Vector spaces

P0 = span
{ }

, P1 = span
{

i

∣∣∣ i = 1, . . . ,N
}
,

P2 = span
{ i

j

∣∣∣ i , j = 1, . . . ,N
}
, P3 = span

{
i j

k

∣∣∣ i , j , k = 1, . . . ,N
}
,

. . .

Planar tangle action

PT : P4 × P6 × P6 → P8

T =

3

1

2 , PT

( 32

3 4

,
3

2
1

1
4

1
,

4
2

1

4
3

2

)
=

4

1 2
4

2
3

3
2

3
4

1

4
1

3

21
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Planar algebras

Annular tangles

Annular tangles

R = , S =

Graded annular vector space

(Vm,n)m,n∈N0 e.g.

v1

∈ V2,4

Multilinear maps
AT : P2 × P4 × P4 → V4,8

T =

1

3

2
, AT (v1, v2, v3) =

v1

v3

v2
∈ V4,8
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Planar algebras

Action of annular vectors

Annular vectors

R =

v1

, S =

v2

v3

Linear maps

VT : P4 → P8

T =

v1

v3

v2
, a = v4 , VT (a) = v4

v1

v3

v2 ∈ P8
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Discrete conformal nets

‘Conformal’ groups

reconstructproject

cont. limitdiscretise

Conf(R1,1) Diff+(S
1)×Diff+(S

1)

Diff+(S
1)

Tk

compactify
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Discrete conformal nets

Conformal nets

A conformal net (Haag-Kastler ’64) consists of:

i) a Hilbert space H
ii) a C ∗-algebra A(I ) on H for each open interval I ⊂ S1

iii) a continuous unitary representation U of Diff+(S
1) on H

Subject to:

Isotony: A(I ) ⊆ A(J) if I ⊆ J

Locality: [A(I ),A(J)] = 0 if I ∩ J = ∅

Covariance: U(α)A(I )U(α)∗ = A(α(I )) α ∈ Diff+(S
1)
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Discrete conformal nets

Discrete conformal nets

A discrete conformal net consists of:

i) a directed set D of finite subsets of S1

ii) a Hilbert space Hs for each s ∈ D
iii) a C ∗-algebra As(i) on Hs for each connected i ⊂ s and s ∈ D
iv) a discrete realisation of Diff+(S

1) denoted D

v) a continuous unitary representation U of D on H (see below)

The full Hilbert space H and C ∗-algebras A(i) are constructed from
‘direct limits’ of Hs and As(i) respectively. Subject to:

Isotony: A(i) ⊆ A(j) if i ⊆ j

Locality: [A(i),A(j)] = 0 if i ∩ j = ∅

Covariance: U(α)A(i)U(α)∗ = A(α(i)) α ∈ D
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Semicontinuous models

Semicontinuous models

A semicontinuous model (Jones ’14) consists of:

i) a direct set D of finite subsets of S1

ii) a Hilbert space Hs for each s ∈ D
iii) a C ∗-algebra As(i) on Hs for each connected i ⊂ S1 and s ∈ D
iv) a discrete realisation of Diff+(S

1) denoted D

v) a continuous unitary representation U of D on H

D is the set of k-adic subdivisions of S1 for k ∈ N≥2

0∼1 1
2

1
2

3
4

3
4

3
4

1
4 1

4 1
4

where S1 is divided into intervals of the form [ mkn ,
m+1
kn ] for m, n ∈ N0.
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Semicontinuous models

A semicontinuous model (Jones ’14) consists of:

i) a direct set D of finite subsets of S1

ii) a Hilbert space Hs for each s ∈ D
iii) a C ∗-algebra As(i) on Hs for each connected i ⊂ S1 and s ∈ D
iv) a discrete realisation of Diff+(S

1) denoted D

v) a continuous unitary representation U of D on H

vectors in Hs are of the form:

(s, x) ≡ 0

1
8

1
4

1
2

5
811

16
3
4

x

s = (0, 18 ,
1
4 ,

1
2 ,

5
8 ,

11
16 ,

3
4) ∈ D

x = x ∈ P|s|
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v) a continuous unitary representation U of D on H
elements of As(i) are of the form:

0

1
8

1
4

1
2

5
811

16
3
4

a

(

(

))

i

i

action on Hs 0

1
8

1
4

1
2

5
811

16
3
4

a

x = 0

1
8

1
4

1
2

5
811

16
3
4

ax
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Semicontinuous models

Semicontinuous models

A semicontinuous model (Jones ’14) consists of:

i) a direct set D of finite subsets of S1

ii) a Hilbert space Hs for each s ∈ D
iii) a C ∗-algebra As(i) on Hs for each connected i ⊂ S1 and s ∈ D
iv) a discrete realisation of Diff+(S

1) denoted D

v) a continuous unitary representation U of D on H

D is Thompson’s group Tk

0 1

0

1

→

0 1

0

1

0 1

0

1

→

0 1

0

1

Theorem (Zhuang ’07)

For each f ∈ Diff+(S
1) there exists a g ∈ Tk approx. f to arb. precision.
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Semicontinuous models

Semicontinuous models

A semicontinuous model (Jones ’14) consists of:

i) a direct set D of finite subsets of S1

ii) a Hilbert space Hs for each s ∈ D
iii) a C ∗-algebra As(i) on Hs for each connected i ⊂ S1 and s ∈ D
iv) a discrete realisation of Diff+(S

1) denoted D

v) a continuous unitary representation U of D on H

Unitary representation induced by a map

Φ : Tk → (Vm,n)m,n∈N0

Continuity: work in progress!
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Semicontinuous models

Semicontinuous models

A semicontinuous model (Jones ’14) consists of:

i) a direct set D of finite subsets of S1

ii) a Hilbert space Hs for each s ∈ D
iii) a C ∗-algebra As(i) on Hs for each connected i ⊂ S1 and s ∈ D
iv) a discrete realisation of Diff+(S

1) denoted D;

v) a continuous unitary representation U of D on H

The full Hilbert space H is defined

H :=
⋃
s∈D

Hs/ ∼, 0

1
8

1
4

1
2

5
811

16
3
4

x ∼
7
8

15
16

0

1
8

1
4

3
4

1
2

5
811

16
3
4

x
I

I

I

I

,
I ∗

I

=

where R ∈ Pk+1. The algebras A(i) are defined similarly.

Xavier Poncini A planar-algebraic universe Aalto Uni. Math. Phys. 12 / 20



Semicontinuous models

Continuous representations

Definition

A representation π is continuous if each sequence (fn)n∈N ⊂ Tk satisfies

lim
n→∞

∥fn − id∥ = 0, lim
n→∞

⟨x , π(fn)(y)⟩ = ⟨x , y⟩, ∀ x , y ∈ H.

Denote by Rotk the rotation subgroup of Tk , generated by:

ϱs : S
1 → S1, x 7→ x + s mod 1,

where s is a k-adic rational. Matrix elements can be expressed as:

〈
x , y

〉
= ...

x

y∗

,
〈
x ,UI (ϱ 1

kr
)(y)

〉
= ...

x

y∗

where x , y ∈ H.
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Semicontinuous models

Continuity conditions

For each x , y ∈ H, there exists a sufficiently large r ∈ N, such that

〈
x ,UI (ϱ 1

kr
)(y)

〉
= ...

x

y∗

= ... ... ... ...

I ∗ I ∗ I ∗

y∗

x

I I I

.

If I ∈ Pk+1 is such that

...

I ∗

I

= , ...

I ∗

I

= , ...

x

y∗

= ...

x

y∗

for all x , y ∈ H. Then

lim
r→∞

〈
x ,UI (ϱ 1

kr
)(y)

〉
=

〈
x , y

〉
,

and with other arguments UI : Rotk → U(H) is a continuous unitary rep.
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Semicontinuous models

Brauer algebra solution

The Brauer planar algebra (Pn)n∈2N0 is generated by the action of planar
tangles on the space P4 = span({ , , }), subject to:

= = δ =

Specialising k = 5 and δ = 1 we have the solution I =

I ∗

I

= = ,
I ∗

I

= = , ...

x

y∗

= ...

x

y∗

.

This solution can be generalised to k = 2n + 5 for all n ∈ N0
. . .

I =
n
. . .

, n
. . . ∈ P2n.

Theorem

For I ∈P2n+6 above UI is a continuous unitary representation of Rot2n+5.
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Integrable operators



Integrable operators

Spin chains on spacetime

R-operators: u ∈ C
R(u) = u =

∑
a∈B4

ra(u) a

Local transfer operators

u

u

u

u

u
u

(

(

))

i

i

∈ As(i), Ln(u) := . . .

u u u

u u u

Global transfer operators

u
uu

u

u
u

u
u u

u

u

u

u
u

∈ As , Gn(u) := . . .

u u u

u u u
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Integrable operators

Spin chains on spacetime

R-operators: u ∈ C
R(u) = u =

∑
a∈B4

ra(u) a

Local transfer operators

u

u

u

u

u
u

(

(

))

i

i

∈ As(i), Ln(u) := . . .

u u u

u u u

Global transfer operators: e.g spacetime translations are generated by

∈ As
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Integrable operators

Integrability

A transfer operator T (u) ∈ As(i) is integrable if

[T (u),T (v)] = 0, ∀ u, v ∈ Ω ⊆ C.

Expanding T (u) in a basis of scalar functions

T (u) =
∞∑
i=0

uiQi , integrability implies [Qi ,Qj ] = 0, ∀ i , j ∈ N0,

where H ≡ Q1 is the hamiltonian. T (u) is polynomially integrable if

∃ b ∈ As(i) such that T (u) ∈ C(u)[b]

Theorem (XP, Rasmussen ’22)

If T (u) is integrable and diagonalisable it is polynomially integrable.
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Integrable operators

Yang-Baxter integrability

A model is Yang-Baxter integrable if the R-operators satisfy local
relations that imply [T (u),T (v)] = 0.

For T (u) ∈ {Ln(u),Gn(u)} a set of sufficient conditions is given by:

• Inversion identities

ii = = ii (i = 1, 2, 3)

• Yang-Baxter equations

u

v

1 =
v

u

1
u

v

2 =
v

u

2
u

v

3 =
v

u

3

• Boundary Yang-Baxter equations

21 = 43 21 = 43
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Integrable operators

Polynomial integrability

There is an adjoint on each As(i) that acts as:

∗ : As(i) → As(i), a
. . .

. . .
7→ a∗

. . .

. . .

For T (u) ∈ {Ln(u),Gn(u)} establishing diagonalisability amounts to:(
. . .

u u u

u u u
)∗

= . . .

u u u

u u u

,

(
. . .

u u u

u u u
)∗

= . . .

u u u

u u u

which is typically a property of Yang-Baxter integrable R-operators.

Theorem (XP, Rasmussen ’23)

For FC, BMW and Liu planar algebras if T (u) is Yang-Baxter integrable
then it is polynomially integrable.

The integrable structure of both local and global operators for such planar
algebras is generated by a single spectral-independent operator!
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Outlook



Outlook

Outlook

Summary:

Discrete conformal nets

Planar algebras provide (almost) examples

Continuity of representations remains a challenge

A class of local and global operators are polynomially integrable

Future work:

Continuity of representations for all of Tk

More local and global operators

Continuum limit taking discrete conformal nets to conformal nets

Generalise to discrete algebraic quantum field theory
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The end!
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