A planar-algebraic universe

Xavier Poncini, PhD candidate

The University of Queensland

Aalto University Mathematical Physics Seminar

Some suggestions that spacetime is not a continuum:

- Aspects of the 'It from Qubit' program
- Successes of loop quantum gravity and causal sets
- Computational universe hypothesis

Question

Can we discretise our theories such that they are recovered under a continuum limit?

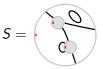
Outline

- 2 Discrete conformal nets
- Semicontinuous models
- Integrable operators

Planar algebras

Planar algebras

Planar tangles

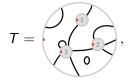


Graded vector space

 $(P_n)_{n\in\mathbb{N}_0}$

Multilinear maps

 $\mathsf{P}_T \colon P_2 \times P_4 \times P_6 \to P_8$



$$\mathsf{P}_{T}(v_{1}, v_{2}, v_{3}) = \bigcirc_{v_{3}}^{(v_{1})} 0 \in P_{8}$$

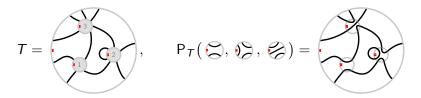
Example: Temperley-Lieb planar algebra

Vector spaces

$$P_{0} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}, \quad P_{2} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}, \quad P_{4} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}, \quad P_{6} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}, \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right], \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array}], \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right], \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right], \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array}], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\begin{array}{c} \bullet \\ \end{array}], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\begin{array}{c} \bullet \\ \end{array}], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\begin{array}{c} \bullet \\ \end{array}], \quad \left[\begin{array}{c} \bullet \\ \end{array}], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\end{array}], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\end{array}], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\end{array}],$$

Planar tangle action

 $P_T: P_4 \times P_6 \times P_6 \rightarrow P_8$



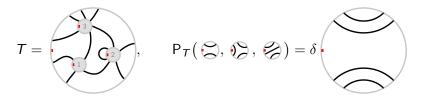
Example: Temperley-Lieb planar algebra

Vector spaces

$$P_{0} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}, \quad P_{2} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}, \quad P_{4} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}, \quad P_{6} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}, \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right], \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array}], \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right], \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right], \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array}], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\begin{array}{c} \bullet \\ \end{array}], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\begin{array}{c} \bullet \\ \end{array}], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\begin{array}{c} \bullet \\ \end{array}], \quad \left[\begin{array}{c} \bullet \\ \end{array}], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\end{array}], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\end{array}], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\end{array}],$$

Planar tangle action

$$P_T: P_4 \times P_6 \times P_6 \rightarrow P_8$$



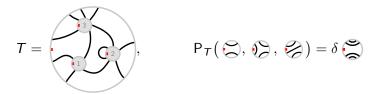
Example: Temperley-Lieb planar algebra

Vector spaces

$$P_{0} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}, \quad P_{2} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}, \quad P_{4} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}, \quad P_{6} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}, \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right], \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array}], \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right], \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right], \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array}], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\begin{array}{c} \bullet \\ \end{array}], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\begin{array}{c} \bullet \\ \end{array}], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\begin{array}{c} \bullet \\ \end{array}], \quad \left[\begin{array}{c} \bullet \\ \end{array}], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\end{array}], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\end{array}], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\begin{array}{c} \bullet \\], \quad \left[\end{array}],$$

Planar tangle action

$$\mathsf{P}_T \colon P_4 \times P_6 \times P_6 \to P_8$$



Vector spaces

$$P_{0} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}, \qquad P_{1} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right| i = 1, \dots, N \right\},$$
$$P_{2} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ j \end{array} \middle| i, j = 1, \dots, N \right\}, \quad P_{3} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ k \end{array} \right| i, j, k = 1, \dots, N \right\},$$
$$\dots$$

Planar tangle action

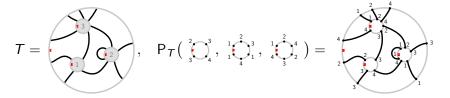
 $D \rightarrow D_1 \vee D_2 \vee D_3 \vee D_4$

Vector spaces

$$P_{0} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}, \qquad P_{1} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right| i = 1, \dots, N \right\},$$
$$P_{2} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ j \end{array} \right| i, j = 1, \dots, N \right\}, \quad P_{3} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ k \end{array} \right| i, j, k = 1, \dots, N \right\},$$

Planar tangle action

 $\mathsf{P}_{\mathsf{T}} \colon \mathsf{P}_4 \times \mathsf{P}_6 \times \mathsf{P}_6 \to \mathsf{P}_8$

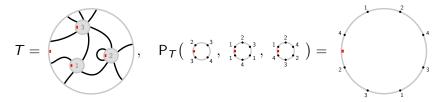


Vector spaces

$$P_{0} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}, \qquad P_{1} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right| i = 1, \dots, N \right\},$$
$$P_{2} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ j \end{array} \right| i, j = 1, \dots, N \right\}, \quad P_{3} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ k \end{array} \right| i, j, k = 1, \dots, N \right\},$$

Planar tangle action

 $\mathsf{P}_{\mathsf{T}} \colon \mathsf{P}_4 \times \mathsf{P}_6 \times \mathsf{P}_6 \to \mathsf{P}_8$



Vector spaces

$$P_{0} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}, \qquad P_{1} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right| i = 1, \dots, N \right\},$$
$$P_{2} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ j \end{array} \middle| i, j = 1, \dots, N \right\}, \quad P_{3} = \operatorname{span}\left\{ \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ k \end{array} \right| i, j, k = 1, \dots, N \right\},$$
$$\dots$$

Planar tangle action

$$T = \bigvee_{1}^{13} (1 + 2)^{13} ($$

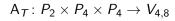
Annular tangles

Annular tangles

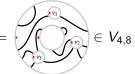
Graded annular vector space

$$(V_{m,n})_{m,n\in\mathbb{N}_0}$$

Multilinear maps



$$\mathsf{A}_{T}(v_1,v_2,v_3) =$$

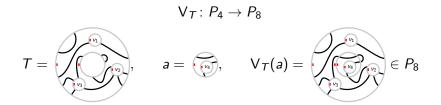


Xavier Poncini

Action of annular vectors

Annular vectors

Linear maps

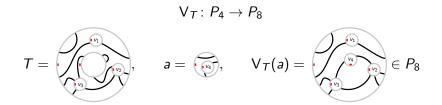


Action of annular vectors

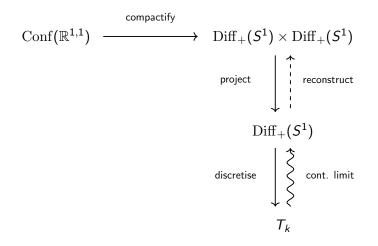
Annular vectors



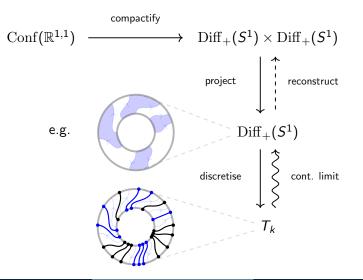
Linear maps



'Conformal' groups



'Conformal' groups



A conformal net (Haag-Kastler '64) consists of:

- i) a Hilbert space ${\cal H}$
- ii) a $\mathit{C}^*\text{-algebra}\ \mathcal{A}(\mathit{I})$ on \mathcal{H} for each open interval $\mathit{I}\subset S^1$
- iii) a continuous unitary representation U of $\mathrm{Diff}_+(S^1)$ on $\mathcal H$

Subject to:

Isotony: $\mathcal{A}(I) \subseteq \mathcal{A}(J)$ if $I \subseteq J$ Locality: $[\mathcal{A}(I), \mathcal{A}(J)] = 0$ if $I \cap J = \emptyset$ Covariance: $U(\alpha)\mathcal{A}(I)U(\alpha)^* = \mathcal{A}(\alpha(I))$ $\alpha \in \text{Diff}_+(S^1)$

A conformal net (Haag-Kastler '64) consists of:

- i) a Hilbert space \mathcal{H}
- ii) a C^* -algebra $\mathcal{A}(I)$ on \mathcal{H} for each open interval $I \subset S^1$
- iii) a continuous unitary representation U of $\mathrm{Diff}_+(S^1)$ on $\mathcal H$

Subject to:

Isotony: $\mathcal{A}(I) \subseteq \mathcal{A}(J)$ if $I \subseteq J$ Locality: $[\mathcal{A}(I), \mathcal{A}(J)] = 0$ if $I \cap J = \emptyset$ Covariance: $U(\alpha)\mathcal{A}(I)U(\alpha)^* = \mathcal{A}(\alpha(I))$ $\alpha \in \text{Diff}_+(S^1)$

A conformal net (Haag-Kastler '64) consists of:

- i) a Hilbert space \mathcal{H}
- ii) a C^* -algebra $\mathcal{A}(I)$ on \mathcal{H} for each open interval $I \subset S^1$
- iii) a continuous unitary representation U of $\mathrm{Diff}_+(S^1)$ on $\mathcal H$

Subject to:

Isotony:
$$\mathcal{A}(I) \subseteq \mathcal{A}(J)$$
 if $I \subseteq J$
Locality: $[\mathcal{A}(I), \mathcal{A}(J)] = 0$ if $I \cap J = \emptyset$
Covariance: $U(\alpha)\mathcal{A}(I)U(\alpha)^* = \mathcal{A}(\alpha(I))$ $\alpha \in \text{Diff}_+(S^1)$

A conformal net (Haag-Kastler '64) consists of:

- i) a Hilbert space ${\mathcal H}$
- ii) a C^* -algebra $\mathcal{A}(I)$ on \mathcal{H} for each open interval $I \subset S^1$
- iii) a continuous unitary representation U of $\mathrm{Diff}_+(S^1)$ on $\mathcal H$

Subject to:

Isotony:
$$\mathcal{A}(I) \subseteq \mathcal{A}(J)$$
 if $I \subseteq J$
Locality: $[\mathcal{A}(I), \mathcal{A}(J)] = 0$ if $I \cap J = \emptyset$
Covariance: $U(\alpha)\mathcal{A}(I)U(\alpha)^* = \mathcal{A}(\alpha(I))$ $\alpha \in \text{Diff}_+(S^1)$

A discrete conformal net consists of:

- i) a directed set ${\mathcal D}$ of finite subsets of S^1
- ii) a Hilbert space \mathcal{H}_s for each $s \in \mathcal{D}$
- iii) a C^* -algebra $\mathcal{A}_s(i)$ on \mathcal{H}_s for each connected $i \subset s$ and $s \in \mathcal{D}$
- iv) a discrete realisation of $\mathrm{Diff}_+(S^1)$ denoted D
- v) a continuous unitary representation U of D on $\mathcal H$ (see below)

The full Hilbert space \mathcal{H} and C^* -algebras $\mathcal{A}(i)$ are constructed from 'direct limits' of \mathcal{H}_s and $\mathcal{A}_s(i)$ respectively. Subject to:

Isotony: $\mathcal{A}(i) \subseteq \mathcal{A}(j)$ if $i \subseteq j$ Locality: $[\mathcal{A}(i), \mathcal{A}(j)] = 0$ if $i \cap j = \emptyset$ Covariance: $U(\alpha)\mathcal{A}(i)U(\alpha)^* = \mathcal{A}(\alpha(i))$ $\alpha \in D$

A discrete conformal net consists of:

- i) a directed set ${\mathcal D}$ of finite subsets of S^1
- ii) a Hilbert space \mathcal{H}_s for each $s \in \mathcal{D}$
- iii) a C^* -algebra $\mathcal{A}_s(i)$ on \mathcal{H}_s for each connected $i \subset s$ and $s \in \mathcal{D}$
- iv) a discrete realisation of $\mathrm{Diff}_+(S^1)$ denoted D
- v) a continuous unitary representation U of D on $\mathcal H$ (see below)

The full Hilbert space \mathcal{H} and C^* -algebras $\mathcal{A}(i)$ are constructed from 'direct limits' of \mathcal{H}_s and $\mathcal{A}_s(i)$ respectively. Subject to:

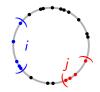
Isotony: $\mathcal{A}(i) \subseteq \mathcal{A}(j)$ if $i \subseteq j$ Locality: $[\mathcal{A}(i), \mathcal{A}(j)] = 0$ if $i \cap j = \emptyset$ Covariance: $U(\alpha)\mathcal{A}(i)U(\alpha)^* = \mathcal{A}(\alpha(i))$ $\alpha \in D$

A discrete conformal net consists of:

- i) a directed set ${\mathcal D}$ of finite subsets of S^1
- ii) a Hilbert space \mathcal{H}_s for each $s \in \mathcal{D}$
- iii) a C^* -algebra $\mathcal{A}_s(i)$ on \mathcal{H}_s for each connected $i \subset s$ and $s \in \mathcal{D}$
- iv) a discrete realisation of $\mathrm{Diff}_+(S^1)$ denoted D
- v) a continuous unitary representation U of D on $\mathcal H$ (see below)

The full Hilbert space \mathcal{H} and C^* -algebras $\mathcal{A}(i)$ are constructed from 'direct limits' of \mathcal{H}_s and $\mathcal{A}_s(i)$ respectively. Subject to:

Isotony: $\mathcal{A}(i) \subseteq \mathcal{A}(j)$ if $i \subseteq j$ **Locality**: $[\mathcal{A}(i), \mathcal{A}(j)] = 0$ if $i \cap j = \emptyset$ Covariance: $U(\alpha)\mathcal{A}(i)U(\alpha)^* = \mathcal{A}(\alpha(i))$ $\alpha \in D$

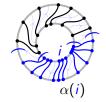


A discrete conformal net consists of:

- i) a directed set ${\mathcal D}$ of finite subsets of S^1
- ii) a Hilbert space \mathcal{H}_s for each $s \in \mathcal{D}$
- iii) a C^* -algebra $\mathcal{A}_s(i)$ on \mathcal{H}_s for each connected $i \subset s$ and $s \in \mathcal{D}$
- iv) a discrete realisation of $\mathrm{Diff}_+(S^1)$ denoted D
- v) a continuous unitary representation U of D on $\mathcal H$ (see below)

The full Hilbert space \mathcal{H} and C^* -algebras $\mathcal{A}(i)$ are constructed from 'direct limits' of \mathcal{H}_s and $\mathcal{A}_s(i)$ respectively. Subject to:

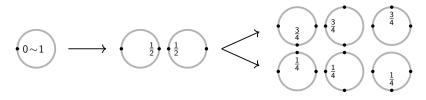
Isotony: $\mathcal{A}(i) \subseteq \mathcal{A}(j)$ if $i \subseteq j$ Locality: $[\mathcal{A}(i), \mathcal{A}(j)] = 0$ if $i \cap j = \emptyset$ **Covariance**: $U(\alpha)\mathcal{A}(i)U(\alpha)^* = \mathcal{A}(\alpha(i))$ $\alpha \in D$



A semicontinuous model (Jones '14) consists of:

- i) a direct set ${\mathcal D}$ of finite subsets of S^1
- ii) a Hilbert space \mathcal{H}_s for each $s \in \mathcal{D}$
- iii) a C*-algebra $\mathcal{A}_s(i)$ on \mathcal{H}_s for each connected $i \subset S^1$ and $s \in \mathcal{D}$
- iv) a discrete realisation of $\mathrm{Diff}_+(S^1)$ denoted D
- v) a continuous unitary representation U of $\mathrm D$ on $\mathcal H$

 $\mathcal D$ is the set of k-adic subdivisions of S^1 for $k\in\mathbb N_{\ge2}$



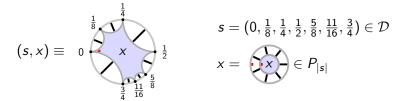
where S^1 is divided into intervals of the form $[\frac{m}{k^n}, \frac{m+1}{k^n}]$ for $m, n \in \mathbb{N}_0$.

A semicontinuous model (Jones '14) consists of:

i) a direct set ${\cal D}$ of finite subsets of S^1

- ii) a Hilbert space \mathcal{H}_s for each $s \in \mathcal{D}$
- iii) a C*-algebra $\mathcal{A}_s(i)$ on \mathcal{H}_s for each connected $i \subset S^1$ and $s \in \mathcal{D}$
- iv) a discrete realisation of $\text{Diff}_+(S^1)$ denoted D
- v) a continuous unitary representation U of D on $\mathcal H$

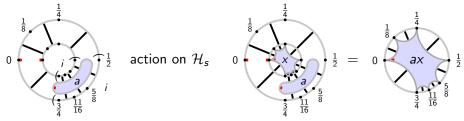
vectors in \mathcal{H}_s are of the form:



A semicontinuous model (Jones '14) consists of:

- i) a direct set ${\cal D}$ of finite subsets of S^1
- ii) a Hilbert space \mathcal{H}_s for each $s \in \mathcal{D}$
- iii) a C^* -algebra $\mathcal{A}_s(i)$ on \mathcal{H}_s for each connected $i \subset S^1$ and $s \in \mathcal{D}$
- iv) a discrete realisation of $\mathrm{Diff}_+(S^1)$ denoted D
 - v) a continuous unitary representation U of ${
 m D}$ on ${\cal H}$

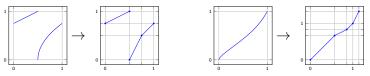
elements of $\mathcal{A}_{s}(i)$ are of the form:



A semicontinuous model (Jones '14) consists of:

- i) a direct set ${\mathcal D}$ of finite subsets of S^1
- ii) a Hilbert space \mathcal{H}_s for each $s\in\mathcal{D}$
- iii) a C^* -algebra $\mathcal{A}_s(i)$ on \mathcal{H}_s for each connected $i \in S^1$ and $s \in \mathcal{D}$
- iv) a discrete realisation of $\mathrm{Diff}_+(S^1)$ denoted D
- v) a continuous unitary representation U of D on $\mathcal H$

D is Thompson's group T_k



Theorem (Zhuang '07)

For each $f \in \text{Diff}_+(S^1)$ there exists a $g \in T_k$ approx. f to arb. precision.

A semicontinuous model (Jones '14) consists of:

- i) a direct set ${\cal D}$ of finite subsets of S^1
- ii) a Hilbert space \mathcal{H}_s for each $s \in \mathcal{D}$
- iii) a C^* -algebra $\mathcal{A}_s(i)$ on \mathcal{H}_s for each connected $i \subset S^1$ and $s \in \mathcal{D}$
- iv) a discrete realisation of $\mathrm{Diff}_+(S^1)$ denoted D
- v) a continuous unitary representation U of D on $\mathcal H$

Unitary representation induced by a map

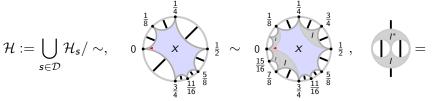
$$\Phi: T_k \to (V_{m,n})_{m,n \in \mathbb{N}_0}$$

Continuity: work in progress!

A semicontinuous model (Jones '14) consists of:

- i) a direct set ${\mathcal D}$ of finite subsets of S^1
- ii) a Hilbert space \mathcal{H}_s for each $s \in \mathcal{D}$
- iii) a C*-algebra $\mathcal{A}_s(i)$ on \mathcal{H}_s for each connected $i \subset S^1$ and $s \in \mathcal{D}$
- iv) a discrete realisation of $\mathrm{Diff}_+(S^1)$ denoted D;
- v) a continuous unitary representation U of D on $\mathcal H$

The full Hilbert space \mathcal{H} is defined



where $R \in P_{k+1}$. The algebras $\mathcal{A}(i)$ are defined similarly.

Continuous representations

Definition

r

A representation π is *continuous* if each sequence $(f_n)_{n \in \mathbb{N}} \subset T_k$ satisfies

$$\lim_{n\to\infty} \|f_n - \mathrm{id}\| = 0, \qquad \lim_{n\to\infty} \langle x, \pi(f_n)(y) \rangle = \langle x, y \rangle, \qquad \forall \, x, y \in \mathcal{H}.$$

Denote by Rot_k the rotation subgroup of T_k , generated by:

$$\varrho_s: S^1 \to S^1, \qquad \qquad x \mapsto x + s \mod 1,$$

where s is a k-adic rational. Matrix elements can be expressed as:

$$\langle x, y \rangle = \underbrace{\bigvee_{x}^{y^*}}_{x}, \qquad \langle x, U_l(\varrho_{\frac{1}{k^r}})(y) \rangle = \underbrace{\bigvee_{x}^{y^*}}_{x}$$

where $x, y \in \mathcal{H}$.

Xavier Poncini

Continuity conditions

For each $x, y \in \mathcal{H}$, there exists a sufficiently large $r \in \mathbb{N}$, such that

$$\langle x, U_{l}(\varrho_{\frac{1}{k^{r}}})(y) \rangle = \bigvee_{x}^{y^{*}} = \bigvee_{x}^{r} \bigvee_{$$

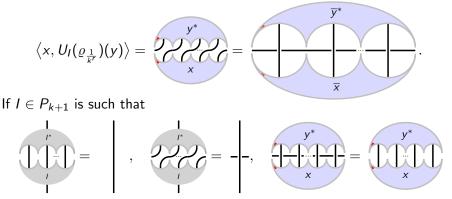
for all $x, y \in \mathcal{H}$. Then

$$\lim_{r\to\infty} \langle x, U_l(\varrho_{\frac{1}{k^r}})(y) \rangle = \langle x, y \rangle,$$

and with other arguments $U_I : \operatorname{Rot}_k \to \operatorname{U}(\mathcal{H})$ is a continuous unitary rep.

Continuity conditions

For each $x, y \in \mathcal{H}$, there exists a sufficiently large $r \in \mathbb{N}$, such that



for all $x, y \in \mathcal{H}$. Then

$$\lim_{r\to\infty} \langle x, U_I(\varrho_{\frac{1}{k^r}})(y) \rangle = \langle x, y \rangle,$$

and with other arguments $U_I : \operatorname{Rot}_k \to \operatorname{U}(\mathcal{H})$ is a continuous unitary rep.

Continuity conditions

For each $x, y \in \mathcal{H}$, there exists a sufficiently large $r \in \mathbb{N}$, such that

$$\langle x, U_{l}(\varrho_{\frac{1}{k^{r}}})(y) \rangle = \bigvee_{x}^{y^{*}} = \bigvee_{\overline{x}}^{\overline{y^{*}}} = \bigvee_{\overline{x}}^{\overline{y^{*}}} = \bigvee_{\overline{x}}^{\overline{y^{*}}} = \bigvee_{\overline{x}}^{\overline{y^{*}}} = \bigvee_{x}^{\overline{y^{*}}} = \bigvee_{x}$$

for all $x, y \in \mathcal{H}$. Then

lf

$$\lim_{r\to\infty} \langle x, U_I(\varrho_{\frac{1}{k^r}})(y) \rangle = \langle x, y \rangle,$$

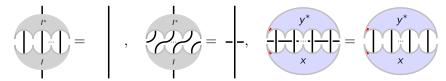
and with other arguments $U_I : \operatorname{Rot}_k \to \operatorname{U}(\mathcal{H})$ is a continuous unitary rep.

Continuity conditions

For each $x, y \in \mathcal{H}$, there exists a sufficiently large $r \in \mathbb{N}$, such that

$$\langle x, U_l(\varrho_{\frac{1}{k^r}})(y) \rangle = \bigvee_{x}^{y^*} \bigvee_{x}^{y^*} = \bigvee_{x}^{y^*} \bigvee_{x}^{y^*} = \langle x, y \rangle.$$

If $I \in P_{k+1}$ is such that



for all $x, y \in \mathcal{H}$. Then

$$\lim_{r\to\infty} \langle x, U_I(\varrho_{\frac{1}{k^r}})(y) \rangle = \langle x, y \rangle,$$

and with other arguments $U_I : \operatorname{Rot}_k \to \operatorname{U}(\mathcal{H})$ is a continuous unitary rep.

Xavier Poncini

Brauer algebra solution

The Brauer planar algebra $(P_n)_{n \in 2\mathbb{N}_0}$ is generated by the action of planar tangles on the space $P_4 = \operatorname{span}(\{ \bigoplus , \bigoplus , \bigoplus \})$, subject to:

$$\bigotimes = \bigotimes \qquad \bigotimes = \delta \qquad \bigotimes = \delta \qquad (\bigotimes = \delta)$$

Specialising $k = 5$ and $\delta = 1$ we have the solution $\bigvee = \bigvee$

This solution can be generalised to k = 2n + 5 for all $n \in \mathbb{N}_0$

$$I = \bigvee_{n} P_{2n}.$$

Theorem

For $I \in P_{2n+6}$ above U_I is a continuous unitary representation of $\operatorname{Rot}_{2n+5}$.

Brauer algebra solution

The Brauer planar algebra $(P_n)_{n \in 2\mathbb{N}_0}$ is generated by the action of planar tangles on the space $P_4 = \operatorname{span}(\{ \bigoplus , \bigoplus \})$, subject to:

This solution can be generalised to k = 2n + 5 for all $n \in \mathbb{N}_0$

$$I = \bigvee_{n} P_{2n}.$$

Theorem

Sp

For $I \in P_{2n+6}$ above U_I is a continuous unitary representation of $\operatorname{Rot}_{2n+5}$.

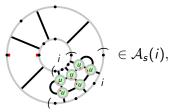
Integrable operators

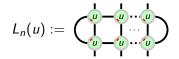
Spin chains on spacetime

R-operators: $u \in \mathbb{C}$

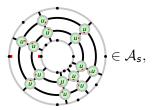
$$R(u) = \mathbf{y} = \sum_{a \in B_A} r_a(u) a$$

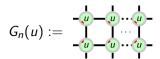
Local transfer operators





Global transfer operators



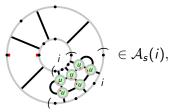


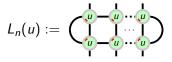
Spin chains on spacetime

R-operators: $u \in \mathbb{C}$

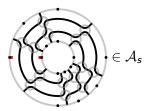
$$R(u) = \sum_{a \in B_a} r_a(u) a$$

Local transfer operators





Global transfer operators: e.g spacetime translations are generated by



Integrability

A transfer operator $T(u) \in A_s(i)$ is **integrable** if

$$[T(u), T(v)] = 0, \qquad \forall u, v \in \Omega \subseteq \mathbb{C}.$$

Expanding T(u) in a basis of scalar functions

$$\mathcal{T}(u) = \sum_{i=0}^{\infty} u^i Q_i$$
, integrability implies $[Q_i, Q_j] = 0$, $\forall i, j \in \mathbb{N}_0$,

where $H \equiv Q_1$ is the hamiltonian. T(u) is **polynomially integrable** if

 $\exists \; b \in \mathcal{A}_{s}(i) \; \; ext{such that} \; \mathcal{T}(u) \in \mathbb{C}(u)[b]$

Theorem (XP, Rasmussen '22)

If T(u) is integrable and diagonalisable it is polynomially integrable.

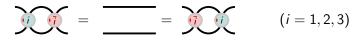
Xavier Poncini

Yang-Baxter integrability

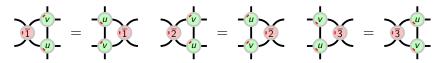
A model is **Yang-Baxter integrable** if the *R*-operators satisfy *local* relations that imply [T(u), T(v)] = 0.

For $T(u) \in \{L_n(u), G_n(u)\}$ a set of sufficient conditions is given by:

Inversion identities



• Yang-Baxter equations



• Boundary Yang-Baxter equations

Polynomial integrability

There is an adjoint on each $A_s(i)$ that acts as:

$$^*:\mathcal{A}_s(i)\to\mathcal{A}_s(i),$$

For $T(u) \in \{L_n(u), G_n(u)\}$ establishing **diagonalisability** amounts to:

$$\left(\begin{pmatrix} 1 & -u & \cdots & u \\ 1 & -u & \cdots & u \\ u & -u & \cdots & u \end{pmatrix}^* = \begin{pmatrix} 1 & -u & \cdots & u \\ 1 & \cdots & u \\ u & -u & \cdots & u \end{pmatrix}, \quad \left(\begin{array}{c} -u & -u & \cdots & u \\ 1 & \cdots & u \\ -u & -u & \cdots & u \\ -u & -u & \cdots & u \end{array}\right)^* = \begin{array}{c} -u & -u & \cdots & u \\ -u & -u & \cdots & u \\ -u & -u & \cdots & u \\ -u & -u & \cdots & u \end{array}$$

which is typically a property of Yang-Baxter integrable R-operators.

Theorem (XP, Rasmussen '23)

For FC, BMW and Liu planar algebras if T(u) is **Yang-Baxter integrable** then it is **polynomially integrable**.

The integrable structure of both local and global operators for such planar algebras is generated by a single spectral-independent operator!

Xavier Poncini

A planar-algebraic universe

Polynomial integrability

There is an adjoint on each $A_s(i)$ that acts as:

For $T(u) \in \{L_n(u), G_n(u)\}$ establishing **diagonalisability** amounts to:

$$\left(\mathbf{M}\right)^{*} = \mathbf{M}$$

which is typically a property of Yang-Baxter integrable R-operators.

Theorem (XP, Rasmussen '23)

For FC, BMW and Liu planar algebras if T(u) is **Yang-Baxter integrable** then it is **polynomially integrable**.

The integrable structure of both local and global operators for such planar algebras is generated by a single spectral-independent operator!

Xavier Poncini

A planar-algebraic universe

Outlook

Outlook

Summary:

- Discrete conformal nets
- Planar algebras provide (almost) examples
- Continuity of representations remains a challenge
- A class of local and global operators are polynomially integrable

Future work:

- Continuity of representations for all of T_k
- More local and global operators
- Continuum limit taking discrete conformal nets to conformal nets
- Generalise to discrete algebraic quantum field theory

The end!