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Motivation

Some suggestions that spacetime is not a continuum:

@ Aspects of the ‘It from Qubit" program
@ Successes of loop quantum gravity and causal sets

@ Computational universe hypothesis

Can we discretise our theories such that they are recovered under a
continuum limit?
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Outline

@ Planar algebras

© Discrete conformal nets
© Semicontinuous models
@ Integrable operators

© Outlook
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Planar algebras

Planar algebras

Planar tangles

S — S S
R=1 /0, S=t N
i\ \

Graded vector space

('Dn)nGNo
Multilinear maps

PTZP2><P4><P6—>P8

/e v

S Pr(vi,va,v3) =+ o/ e
N

Xavier Poncini

A planar-algebraic universe



Planar algebras

Example: Temperley-Lieb planar algebra

Vector spaces
Py = span{ . }, P, = span{ . | }, Py = span{ -) ( , -: },
Po=son{ 9|0 2 0 K(- 92 1

Planar tangle action

PTZP4><P6><P6—)P8
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Planar algebras

Example: Temperley-Lieb planar algebra

Vector spaces

Pozspan{ . }, P2:span{ . | }, P4:span{ -) ( , -: },

Po=son{ 9|0 2 0 K(- 92 1
Planar tangle action
Pr: Psx Ps x Ps— Pg
\\/

T = ) PT(':,')>"-/4-):6
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Planar algebras

Example: Tensor planar algebra

Vector spaces

Py = span{ . }, P = Span{ Y

i
°

P, = span{-

.. o
j k
Planar tangle action

PT:P4><P6><P6—>P8
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Planar algebras

Example: Tensor planar algebra

Vector spaces

Py = span{ . }, P, = span{ Y

i

P> = span{-

J k
Planar tangle action

PTZP4><P6><P6—)P8
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Planar algebras

Example: Tensor planar algebra

Vector spaces

Po:span{ . }, Plzspan{ = e |i=1, ,N},
P2:span{- i,jzl,...,N}, P3:span{i: ' i,j, k=1, .,N},
j k

Planar tangle action

PTZP4><P6><P6—)P8

Tr=: 1 ) PT( . ) 10 4. N ¥
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Planar algebras

Example: Tensor planar algebra

Vector spaces

Py = span{ . }, P = Span{ Y

i
°

P, = span{-

Planar tangle action

PT: P4><P6><P6—>P8
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Planar algebras

Annular tangles

Annular tangles

R:-j' : 5:(})

Graded annular vector space
Ny

(Vm,n)m,neNo eg. € V274

Multilinear maps
AT: P2 X P4 X P4 — V478

T="-/f 2.7, Ar(vi,vo,v3) =+ J( . Vig
43}\" ( ) /‘/(’J\ )
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Planar algebras

Action of annular vectors

Annular vectors

Linear maps

tvy v

2 )
T = 4}, a= -‘.}T—, Vr(a) = fv\‘}§ € Pg
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Planar algebras

Action of annular vectors

Annular vectors

Linear maps

tvy v

_) N —) NN
T=-/f 2.0, a= T~ V=" Y EP
K_\}\ ‘ =9
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Discrete conformal nets

‘Conformal’ groups

compactify
Conf(RM) —— Diff; (S') x Diff  (S!)
A
project : reconstruct
Diff, (S1)
discretise § cont. limit
Tk
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Discrete conformal nets

‘Conformal’ groups

compactify
Conf(RM) ——— Diff . (S) x Diff, (S!)
AN
project | reconstruct
e.g. Diff , (S1)
discretise cont. limit

2
2
i
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Discrete conformal nets

Conformal nets

A conformal net (Haag-Kastler '64) consists of:

i) a Hilbert space H

i) a C*-algebra A(/) on H for each open interval | C S!
iii) a continuous unitary representation U of Diff, (S) on H

Subject to:
Isotony: A(/) C A(J) if I CJ
Locality: [A(/), A(J)] =0 ifinJ=10

Covariance:  U(a)A(1)U(a)* = A(a(l)) « € Diff(S?)

Xavier Poncini A planar-algebraic universe Aalto Uni. Math. Phys. 10 /20



Discrete conformal nets
Conformal nets

A conformal net (Haag-Kastler '64) consists of:

i) a Hilbert space H

i) a C*-algebra A(/) on H for each open interval | C St
iii) a continuous unitary representation U of Diff, (S1) on H

Subject to:

Isotony: A(/) C A(J) if 1 CJ

Locality: [A(1), A(J)] =0 ifINnJ=10 )
Covariance:  U(a)A()U(a)* = A(a(l)) « € Diff;(S?) &Q’_)/\

Xavier Poncini A planar-algebraic universe Aalto Uni. Math. Phys. 10 /20



Discrete conformal nets
Conformal nets

A conformal net (Haag-Kastler '64) consists of:

i) a Hilbert space H

i) a C*-algebra A(/) on H for each open interval | C St
iii) a continuous unitary representation U of Diff, (S1) on H

Subject to:
Isotony: A(/) C A(J) if 1 CJ
Locality: [A(/), A(J)] =0 ifInd=10 /
C H . * : 1 y\
ovariance: U(a)A(l)U(a)* = A(a(l)) « € Diff (57)

Xavier Poncini A planar-algebraic universe Aalto Uni. Math. Phys. 10 /20



Discrete conformal nets
Conformal nets
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Discrete conformal nets

Discrete conformal nets

A discrete conformal net consists of:
i) a directed set D of finite subsets of S*
ii) a Hilbert space Hs for each s € D
iii) a C*-algebra As(i) on Hs for each connected i C s and s € D
iv) a discrete realisation of Diff ; (S!) denoted D
v) a continuous unitary representation U of D on H (see below)

The full Hilbert space ‘H and C*-algebras A(/) are constructed from
‘direct limits’ of Hs and A4(i) respectively. Subject to:

Isotony: A(i) C A()) if i Cj
Locality: [A(), A(j)] =0 ifinj=10
Covariance: U(a)A(U(a)* = A(a(i)) a€D
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Discrete conformal nets

Discrete conformal nets
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Discrete conformal nets

Discrete conformal nets

A discrete conformal net consists of:
i) a directed set D of finite subsets of St

i) a Hilbert space H for each s € D

iii) a C*-algebra A4(i) on Hs for each connected i C s and s € D
iv) a discrete realisation of Diff ; (S') denoted D

v) a continuous unitary representation U of D on H (see below)

The full Hilbert space H and C*-algebras A(/) are constructed from
‘direct limits’ of Hs and As(i) respectively. Subject to:

Isotony: A(7) C A(j) if i C Z e
Locality: [A(/), A(j)] =0 ifinj=10 /‘\l.‘ ; Y
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Semicontinuous models

Semicontinuous models

A semicontinuous model (Jones '14) consists of:
i) a direct set D of finite subsets of St

D is the set of k-adic subdivisions of S! for k € N>

. .
3
3 Z
LT K &1 . .
4
e0~1 —_—> e %o o% . : :
1
¢ 4 oo% t 1 ?
2
. .

where S! is divided into intervals of the form [ mkf,l] for m, n € Ny.
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Semicontinuous models

Semicontinuous models

A semicontinuous model (Jones '14) consists of:

ii) a Hilbert space H for each s € D

vectors in Hs are of the form:

1
2
i 1 1115 11 3
8\ / SZ(?§>Z7§a§7E7Z)ED
()= 0l x i1 i
/ ™y X = "X_€P|s|
A D
$11 8
3 =
Zl
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Semicontinuous models

Semicontinuous models

A semicontinuous model (Jones '14) consists of:

iii) a C*-algebra A(i) on Hs for each connected i C S and s € D

elements of A,(7) are of the form:

[
AN
~
AN

0= = ;%73 actiononHs 0+ =Xz

1
ol 2 = 0= ax 3
(.-\ ~ <o ~ /
/ Vo . / 13 s
'] \.5[ ] \.5 e 3
o Ve 8 oV 3 3 1
11 11 201
3 3 4
7 16 7 16
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Semicontinuous models

Semicontinuous models

A semicontinuous model (Jones '14) consists of:

iv) a discrete realisation of Diff ; (S!) denoted D

D is Thompson's group Ty
= = [ /7 {

/—>/ — f
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Semicontinuous models

Semicontinuous models

A semicontinuous model (Jones '14) consists of:

v) a continuous unitary representation U of D on H

Unitary representation induced by a map

ST — (Vm,n)m,nENo

Continuity: work in progress!
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Semicontinuous models

Semicontinuous models

A semicontinuous model (Jones '14) consists of:
i) a direct set D of finite subsets of St
i) a Hilbert space Hs for each s € D

)
i) a C*-algebra A(i) on Hs for each connected i C St and s € D
iv) a discrete realisation of Diff , (S1) denoted D;

)

a continuous unitary representation U of D on H

v

Vv

The full Hilbert space H is defined
1

\/\/ |
/ o N0 2
H::UHS/N’ 0 o= X 4%/\/ 0 o= X 4%’ I I =
~ ! ~
P a R ‘
8
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Semicontinuous models

Continuous representations

Definition

A representation 7 is continuous if each sequence (f,)neny C Tk satisfies

nll_)ﬁ;O ||fn, —id|| = 0, n||_>rrgo<x,7r(fn)(y)> = (x,y), Vx,y € H.

Denote by Roty the rotation subgroup of Ty, generated by:

0s : St — St X+ x+s modl,

where s is a k-adic rational. Matrix elements can be expressed as:

*

y

%
cry=1 L ulep) ) = 222

X

where x,y € H.
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Semicontinuous models
Continuity conditions

For each x,y € H, there exists a sufficiently large r € N, such that

*

y
w0te 00 = S22 S
If I € Pyy1 is such that -
L Iz 4 v 4 y*
D= | 22+ - L

for all x,y € H. Then
Jlim. (x, U/(lef,)(y» = (x.y),

and with other arguments U : Rotx — U(#H) is a continuous unitary rep.

Xavier Poncini A planar-algebraic universe Aalto Uni. Math. Phys. 14 /20



Semicontinuous models

Continuity conditions

For each x,y € H, there exists a sufficiently large r € N, such that

*

y
e 00 = G = =
If I € Pyy1 is such that -
L , 4 v 4 y*
D= | %2 - T
! ! X X

for all x,y € H. Then
Jlim. (x, U/(lef,)(y» = (x.y),

and with other arguments U : Rotx — U(#H) is a continuous unitary rep.

Xavier Poncini A planar-algebraic universe Aalto Uni. Math. Phys. 14 /20



Semicontinuous models

Continuity conditions
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Semicontinuous models

Continuity conditions

For each x,y € H, there exists a sufficiently large r € N, such that

y* v
o Ules)) = 22 =L =
X X
If | € Pgy1 is such that
L ! 4 y* 4 v
L= | 22 - L
I I X X
| |

for all x,y € H. Then
lim (%, Ui(02)(v)) = (x,¥),

and with other arguments U, : Rotx — U(#) is a continuous unitary rep.
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Semicontinuous models

Brauer algebra solution

The Brauer planar algebra (P,)nean, is generated by the action of planar
tangles on the space P4 = span({¢) (, =<, X }), subject to:

R =9( D) =4 Q)=
Specialising k =5 and § = 1 we have the solution ::“%U
. ' oy Sy
LT = = |, = =-~, =111

This solution can be generalised to k =2n+ 5 for all n € Ny
LAl »
For I € P>,16 above U, is a continuous unitary representation of Rotonys.
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Integrable operators

Spin chains on spacetime

R-operators: u € C

Local transfer operators

\ / o0&
/r_,\T € As(i), Ln(u) = C!,_E 5)
e ¢ o -

/\

Global transfer operators
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Integrable operators

Spin chains on spacetime

R-operators: u € C
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Integrable operators

Integrability

A transfer operator T(u) € As(i) is integrable if
[T(u), T(v)] =0, Vu,veQCC.
Expanding T(u) in a basis of scalar functions
T(u) = Z u'Q;, integrability implies [Qi,Q]=0, Vi,je Ny,
i=0

where H = Qy is the hamiltonian. T(u) is polynomially integrable if

3 b € As(i) such that T(u) € C(u)[b]

Theorem (XP, Rasmussen '22)

If T(u) is integrable and diagonalisable it is polynomially integrable.
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Integrable operators

Yang-Baxter integrability

A model is Yang-Baxter integrable if the R-operators satisfy local
relations that imply [T(u), T(v)] = 0.

For T(u) € {Ln(u), Go(u)} a set of sufficient conditions is given by:
e Inversion identities

Ve Ve - Ve Ve i
i v = = v ' (/:1’2’3)
< NS\ — < NS\
e Yang-Baxter equations
1 1 1 1 1 1
~N-~v- SN/ NV SUSN/s TVSNr N U=
1 I = I Nl ) I = I () I 3 = 3
/\‘u_ =v < 7\ - =v _‘u/\ /\‘V—
1 1 1 1 1 1
e Boundary Yang-Baxter equations
Ve Ve Ve Ve Ve Ve NN\
l 12 = 3 4 1 21 = 13 4
< N\ < N\ < N\ < N\
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Integrable operators

Polynomial integrability

There is an adjoint on each A(/) that acts as:
1 A(i) = As(i), a | [Ta
For T(u) € {Ln(u), Gp(u)} establishing diagonalisability amounts to:
[T R % [
(O e )) - O I
T o

which is typically a property of Yang-Baxter integrable R-operators.

1 [ * | R
u - —U e U - - —U e U -
|>7 [ R = 1 11

u U — Y - U — U -
1 1 1 1 1

Theorem (XP, Rasmussen '23)

For FC, BMW and Liu planar algebras if T(u) is Yang-Baxter integrable
then it is polynomially integrable.

The integrable structure of both local and global operators for such planar
algebras is generated by a single spectral-independent operator!
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Outlook

Outlook

Summary:
@ Discrete conformal nets
@ Planar algebras provide (almost) examples
o Continuity of representations remains a challenge
o

A class of local and global operators are polynomially integrable

Future work:
@ Continuity of representations for all of T
@ More local and global operators
@ Continuum limit taking discrete conformal nets to conformal nets
o

Generalise to discrete algebraic quantum field theory
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The end!
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