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Introduction
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Motivation

GR QM

Quantum theoretic description

CDT
GR QM

Quantum theoretic description

?
GR QM

Unified
Theory

Quantum theoretic description

GR - General Relativity
QM - Quantum Mechanics
CDT - Causal Dynamical Triangulations
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CDT I

We will be considering a 1 + 1-dimensional CDT model with the topology
S1 × N+. An example CDT universe is given by

Triangulation example ti
1 2 3 `i `i + 1

, where `i + 1 ≡ 1.

Infinitesimal time steps ti → ti + 1 are generated by the transfer matrix

T =
∑

i ,ui ,di ,n

u1

d1

u1

dn

ti + 1

ti

which is uniquely defined by the sequences u and d.
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CDT II

The multiplication of two transfer matrices generate all possible
two-instant triangulations

T2 =
∑

i ,ui ,d i ,m

u1

d
′
1

um

d
′
m

u0

d
′
0

0 1 2 m − 1 m

We consider the CDT universe to be generated by TN , where N denotes
the number of time instants in the universe. Let us now consider the
structure of the constituent triangles:

γts γst

γtt

, γts γst

γtt – space-like – time-like

These objects are flat in the sense that γts + γst + γtt = π.
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CDT III

Let us consider a node with j incoming and k outgoing edges

k

j

, 2π + (k + j − 4)γtt = Λ.

Despite appearance, the internal structure of the triangles is maintained.
This gives rise to non-Euclidean geometries

Euclidean : j = k = 2, Λ = 2π −→

Hyperbolic : j = k = 1, Λ < 2π −→

Elliptic : j = k = 3, Λ > 2π −→
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Loop models I

Of seemingly independent interest are lattice loop models (LLM),
providing descriptions of systems possessing non-local degrees of freedom:

Percolation

Spin clusters

Polymer chains

Let us consider a particular lattice configuration on the cylinder

Naturally occurring within the lattice are contractible loops. These objects
are assigned a non-local parameter β.
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Loop models II

We can describe of these models with a transfer matrix

T (u) = u u ... u , u = a(u) + b(u)

For a general class of boundary conditions we have a double-row object

T (u) =
u u ... u

u u ... u

uu , u = c(u) + d(u)

Here we interpret the coefficients a(u), b(u), c(u) and d(u) as local
Boltzmann weights.
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Loop models III

We seek to fix the local and non-local weights such that the model is
endowed with the property of integrability. The integrability of a lattice
model is encoded in the transfer matrix

[T (u),T (v)] = 0 =⇒ (infinite) set of conserved quantities

Sufficient conditions for integrability:

u

v

u + v =
v

u

u + v u + v

u − v u

v

=

u − v

u + v

v

u

w −w =
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Loop models on triangulations

Theories of quantum gravity incorporate gravity-matter couplings

Raw triangulations encode the geometry of the gravitational field

Loop models describe interaction of matter fields

Coupling matter to triangulations we assign a loop degree of freedom
to each simplex

We seek to assign this freedom in a way that maintains integrability
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Project structure
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Project structure

LLM:
� Braid monoid models

� Fusion procedure

� Boundary conditions

� Link invariants

Integrability

Framework

CDT:
� t-Braid monoid models

� t-Fusion procedure

� t-Boundary conditions
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Progress and methods
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Integrability I

Here we present the dense model

u = s0(u) + s1(u) , u = s0(u) + s1(u)

Typical notions of integrability are established on a regular square lattice:

u :=
u
, u := u , u := , u := u u , u := u u

This is accompanied by vertical multiplication rules, encoding the
underlying “triangular nature” of these objects. Finally we introduce

u = u + u + u + u , u = u + u + u + u ,

where horizontal multiplication rules eliminate under/overcounting
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Integrability II

T(u)T(v) =
∑

ui ,d i ,m

u1

d1

um

dm

u0

d0

0 1 2 m − 1 m
v

u

v

u

v

u

∞∑
n=1

v

u

v

u

v

u

...

...

1 2 ... n

=

T(v)T(u) =
∑

ui ,d i ,m

u1

d1

um

dm

u0

d0

0 1 2 m − 1 m
u

v

u

v

u

v

∞∑
n=1

u

v

u

v

u

v

...

...

1 2 ... n

Establishing the red and green connections, we conclude [T(u),T(v)] = 0

Horizontal/vertical multiplication rules

Integrability
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Integrability III

Similar to regular lattice models, sufficient conditions for integrability are

: w

v

u

= w

u

v

, w w =

Any model satisfying these conditions is integrable. For the particular case
of the dense model, we have found the solution w = uv , w = −uv

u = − + λu2k+1 , u = − + λu2k+1 , β = 0

where λ ∈ C and k ∈ N are free parameters of the model.
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Braid monoid algebras I

Our goal is to develop a generalisation of the so-called braid monoid
algebra as a quotient of the braid group algebra. Distilling the properties
of crossing loop segments we arrive at the four rules

1 Invariance under regular isotopy: = , =

2 Contractible loops are removed: = β

3 Twists are removed: = ω , = ω−1

4 Twisting limit of d :

..
.

d

= αd−1
..

.

d − 1

+ ...+ α1 + α0

These properties are encoded as quotients of the braid group algebra.
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Braid monoid algebras II

For d = 2 we have Temperley-Lieb-like algebras TLn(ω)

, β = {±1,−ω − ω−1}

For d = 3 we have Birman–Murakami–Wenzl-like algebras BMWn(ω, r)

, β ={±1,−ω − ω−1,±i ,
(ω/r − 1)(ωr ± 1)

ω2 ∓ 1
}

These solutions persist up to arbitrary d .
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Fusion

The fusion procedure allows the construction of higher spin systems

u
(1, 1) ⊗ u

(1, 1)

...

...

...

...

w
(1, 1)

u
(1, 1)

u
(1, 1)

v
(1, 1)

:= u
(2, 2)

u
(1, 1) ⊗ u

(1, 1)

x
(1, 1)

2u
(1, 1)

y
(1, 1)

:= u
(2, 2)

Exploiting the integrability of the underlying model we can endow the fused
model with this property. It suffices to satisfy the drop-down condition

...

...

...

...

u−1
(1, 1)

u0
(1, 1)

u0
(1, 1)

u1
(1, 1)

=

...

...

...

...

u−1
(1, 1)

u
(1, 1)

u
(1, 1)

u1
(1, 1)

u 1
2

(1, 1)

2u
(1, 1)

u− 1
2

(1, 1)

=
u 1

2

(1, 1)

2u
(1, 1)

u− 1
2

(1, 1)

where um = u + mλ

Selecting v = u1, w = u−1, x = u1/2 and y = u−1/2, the drop-down
property holds for both the bulk and boundary.
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Road map

LLM:
� Braid monoid models

� Fusion procedure

� Boundary conditions

� Link invariants

Integrability

Framework

CDT:
� t-Braid monoid models·Dense model

� t-Fusion procedure

� t-Boundary conditions
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