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Path integral formulation

Quantum field theory admits a description in terms of the path integral:

xi

xf
ϕ

−→ 〈F 〉 =

∫
xi→xf

DϕF [ϕ]e iS[ϕ]

Constructing a naive quantum theory a gravity, let’s just perform these
calculations on a co-evolving background manifold:

xi

xf
ϕ

g

−→ 〈F 〉 =

∫
xi→xf

DgDϕF [g, ϕ]e iS[g,ϕ]

Not generally renormalisable!
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Causal dynamical triangulations

Causal dynamical triangulations (CDT) is an approach to quantum gravity
that offers a reasonable way to compute the path integral:

〈F 〉 =

∫
xi→xf

DgDϕF [g, ϕ]e iS[g,ϕ] →
∑
T ,ϕ

F [T , ϕ]e iS[T ,ϕ]

1 Define the manifold as a triangulation

2 Sum over all possible triangulations

3 Limit the volume of each simplex to zero
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Models
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Pure CDT model

A causal triangulation of a sphere is defined by a sequence of circular
graphs (cycles) S0, S1, . . . ,Sm, Sm+1, where m ∈ N is the height

S0
S1 S2 S3

S4

such that the annulus between two cycles is triangulated. Space-like
edges are coloured red, while time-like edges are coloured black.
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Pure CDT model

Each triangulation of the sphere admits a unique map to the plane defined
by the sequence v0, v1, . . . , vm, vm+1 :

v4

v0

v1

v2

v3 ←→

v0

v1

v2

v3

v4

v1

v2

v3
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Pure CDT model

For C ∈ Cm, denote |Sk | as the number of space-like edges per cycle and
|C | :=

∑m
k=0 |Sk | the total number of space-like edges in C .

v0

v1

v2

v3

v4

v1

v2

v3

,

|S3| = 11

|S2| = 7

|S1| = 5

The pure CDT partition functions are:

Zp(g) :=
∞∑

m=0

Zp
m(g) , Zp

m(g) :=
∑
C∈Cm

g |C |.
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Dense loop model

Elementary triangles in each configuration C ∈ Cm are replaced with:

Sk+1

Sk

The resulting set of dense loop model configurations is denoted Ldem .

v4

v0

v1

v2

v3 ←→

v0

v1

v2

v3

v1

v2

v3

v4
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Dense loop model

Configurations of the dense loop model can be uniquely expressed by the
node notation:

↔ , ↔ , ↔ , ↔ .

Returning to our previous example:

v0

v1

v2

v3

v1

v2

v3

v4

←→

v0

v1

v2

v3

v1

v2

v3

v4

Each space-like edge can either be marked or unmarked.
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Dense loop model

For L ∈ Ldem , denote `(Sk) as the number of space-like edge intersections
per cycle and `(L) :=

∑m+1
k=0 `(Sk) the total number of intersections in L.

v0

v1

v2

v3

v1

v2

v3

v4

,

|S3| = 11, `(S3) = 6

|S2| = 7, `(S2) = 2

|S1| = 5, `(S1) = 4

The dense loop model partition functions are:

Zde(g , α) :=
∞∑

m=0

Zde
m (g , α) , Zde

m (g , α) :=
∑
L∈Ldem

g |L|α`(L).

Xavier Poncini Loop models on causal triangulations April 15, 2021 12 / 43



Dilute loop model

Elementary triangles in each configuration C ∈ Cm are replaced with:
Sk+1

Sk
Sk+1

Sk

The resulting set of dilute loop model configurations is denoted Ldim .

v4

v0

v1

v2

v3 ←→

v0

v1

v2

v3

v1

v2

v3

v4
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Dilute loop model

Configurations of the dilute loop model can be expressed using the node
notation: {

,
}
→ ,

{
,

}
→ ,{

,
}
→ ,

{
,

}
→ .

Returning to our previous example:

v0

v1

v2

v3

v1

v2

v3

v4

−→

v0

v1

v2

v3

v1

v2

v3

v4

The loops are in 2m+1 to 1 correspondence with the nodes. There also
exists a condition for nodes on each layer: #k( ) ∈ 2N, 1 ≤ k ≤ m.
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Dilute loop model

For L ∈ Ldim , denote `(Sk) as the number of space-like edge intersections
per cycle and `(L) :=

∑m+1
k=0 `(Sk) the total number of intersections in L.

v0

v1

v2

v3

v1

v2

v3

v4

,

|S3| = 11, `(S3) = 4

|S2| = 7, `(S2) = 6

|S1| = 5, `(S1) = 2

The dilute loop model partition functions are:

Zdi (g , α) :=
∞∑

m=0

Zdi
m (g , α) , Zdi

m (g , α) :=
∑
L∈Ldim

g |L|α`(L).
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Critical behaviour

Having defined partition functions relevant to each model. These objects
need not be well defined over the entire parameter space of g , α ∈ C.
That is there may exist a critical coupling gc for each model such that

Zp(g) =


Convergent, |g | < gc

Critical point, g = gc

Divergent, g > gc ,

Z ?(g , α) =


Convergent, |g(α)| < gc(α)

Critical curve, g(α) = gc(α)

Divergent, g(α) > gc(α),

where ? ∈ {de, di}. Determining the critical coupling allows one to
establish the domain over which the model is well-defined.
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Tree correspondences
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Planar trees

Let Tm denote the set of height m planar trees. An example tree:

Denote Vk(T ) the set of vertices of T ∈ Tm with distance k from root and
V (T ) the vertex set of T excluding the root

V (T ) :=
m⋃

k=1

Vk(T ).

Note that V (T ) is equal to the number of edges in T .
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Labelled Planar trees

Let T̃m denote the set of height m labelled planar trees

T̃m :=
{

(T , δ) |T ∈ Tm, δ : V (T )→ {0, 1}
}
,

an example:

We define the labelling characteristics

|δ| :=
m∑

k=1

δk , δk :=
∑

v∈Vk (T )

δ(v), k = 1, . . . ,m ,

and the restricted set of labelled trees

T̃ ev
m :=

{
(T , δ) ∈ T̃m | δk ∈ 2N0, k = 1, ...,m

}
.
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Tree partition functions

To each set of trees Tm, T̃m and T̃ ev
m , we associate the partition functions

W (g) :=
∞∑

m=0

Wm(g), Wm(g) :=
∑
T∈Tm

gV (T ),

W (g , α) :=
∞∑

m=0

Wm(g , α), Wm(g , α) :=
∑

(T ,δ)∈T̃m

gV (T )α|δ|,

W ev (g , α) :=
∞∑

m=0

W ev
m (g , α), W ev

m (g , α) :=
∑

(T ,δ)∈T̃ ev
m

gV (T )α|δ|,

recall V (T ) count edges of a tree T , |δ| count the number of 1 labels.
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Pure CDT model bijection

There exists a bijective correspondence between triangulations and trees:

ψ : Cm → Tm

Remove all space-like (red) edges

For each vertex, remove the leftmost outward-pointing time-like
(black) edge

v0

←→

v0

←→

v0
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Dense loop model bijection

There exists a bijective correspondence between triangulations and trees:

ψ̃ : Ldem → T̃m

Remove all space-like (red) edges

For each vertex, remove the leftmost outward-pointing time-like
(black) edge

Label each vertex to the right of an intersected space-like edge

v0

←→

v0

←→

v0
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Dilute loop model correspondence

There exists a 2m+1 to 1 correspondence between triangulations and trees:

ψ̂ : Ldim → T̃ ev
m

Remove all space-like (red) edges

For each vertex, remove the leftmost outward-pointing time-like
(black) edge

Label each vertex to the right of an intersected space-like edge

v0

−→

v0

←→

v0
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Relating partition functions

Causal triangulations and planar trees:

Zp(g) = W (g)

Dense loop causal triangulations and labelled planar trees:

Zde(g , α) = W (g , α2)

Dilute loop causal triangulations and even labelled planar trees:

Zdi (g , α) = 1 +
∞∑

m=1

2m+1W ev
m (g , α)
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Transfer-matrix formalism
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Preliminary result

Consider an arbitrary triangulation Ak of a single time-slice with boundary
lengths lk ≡ |Sk | and lk+1 ≡ |Sk+1|:

vk
Sk

Sk+1

1 2 lk

1 2 lk+1

applying a sequence of local flips

←→ ,

Ak can be transformed into any other triangulation possessing boundary
lengths lk and lk+1. In particular the standard triangulation:

vk
Sk

Sk+1

1 2 lk

1 2 lk+1
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Preliminary result

Extending the flip operation to the dense model

←→ ←→ ←→ ←→

and the dilute model

←→ ←→ ←→ ←→

←→ ←→ ←→ ←→

It follows:

(i) The number of possible dense/dilute, loop configurations on a single
time-slice only depends on the boundary lengths lk and lk+1.

(ii) The flip operations applied to a loop configuration leave the
number of space-like edges and intersections invariant.

Consequently, the details of the triangulation decouple from the loop
configurations.
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Transfer-matrix

We denote the combinatorial operator generating all infinitesimal
configurations as the transfer-matrix, whose elements are given by:

T ?
d ,u :=

∑
di ,ui

Coeff?

(
d1

u1

d2

un

)
=

(
d+u−1

u

)
Coeff?

(
d

u )
,

where ? ∈ {p, de, di}, the binomial coefficient counts distinct
triangulations possessing d =

∑n
i=1 di lower and u =

∑n
i=1 ui upper

space-like edges, Coeff? counts weights associated with the expansions:

p : := g

de : := g

(
+ α

)
di : := g

(
+ + α

1
2

[
+

])
Xavier Poncini Loop models on causal triangulations April 15, 2021 29 / 43



Transfer matrix

T ?
d ,u =

(
d+u−1

u

)
Coeff?

(
d

u )
,

Expanding the coefficient for each ? ∈ {p, de, di}

T p
d ,u =

(
d+u−1

u

)
g

d+u
2

T de
d ,u =

(
d+u−1

u

)
(g(1 + α2))

d+u
2

T di
d ,u =

(
d+u−1

u

)[
(g(1+α))d +(g(1−α))d

] 1
2
[
(g(1+α))u+(g(1−α))u

] 1
2
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Transfer matrix

Defining the vectors relevant to each model ? ∈ {p, de, di}, the kth

components of |v?(g , α)〉 and 〈v?(g , α)|, are

|v?k (g , α)〉 := Coeff?

(
k

)
, 〈v?k (g , α)| := Coeff?

(
k

)
.

The m height partition function of each model can be written

Z ?m(g , α) =
〈
v?(g , α)

∣∣T ?m−1∣∣v?(g , α)
〉
.

Diagrammatically this corresponds to

Z ?m(g , α) =
∑
dk
i ,u

k
i

~δduCoeff?



dm
1

um1

dm
2

umnm

d2
1

u21

d2
2

u2n2

d1
1

u11

d1
2

u1n1

dm+1
1

u01


, where ~δdu :=

m∏
i=0

δd
i+1

ui .
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Critical behaviour
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Pure CDT model

The planar tree partition function admits the recursion and solution

W (g) =
1

1− gW (g)
, W (g) =

1−
√

1− 4g

2g
.

Given the relation

Zp(g) = W (g), D =
{
g ∈ C | |g | < 1

4

}
,

it follows that the pure CDT model is analytic on the disk D with gc = 1
4 .

The partition function admits an expansion

Zp(g) = 2
∞∑
n=0

(−1)n
(gc − g

gc

) n
2
,

and consequently has a critical exponent of 1
2 . With the Hausdorff

dimension shown to be 2 almost surely, Durhuus et. al. (2010).
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Dense loop model

Evaluating the summation over labels δ

Wm(g , α) =
∑

(T ,δ)∈T̃m

gV (T )α|δ| =
∑
T∈Tm

(
g(1 + α)

)V (T )
= Wm(g(1 + α)).

Recalling

Zde(g , α) = W (g , α2), Zp(g) = W (g),

the pure CDT partition function is equal to the dense partition function
under the shift in coupling g → g(1 + α2). It follows that the dense loop
model is analytic on the disk

Dα2 =
{

(g , α2) ∈ C2 | |g | < 1
4(1+|α2|)

}
,

and possesses the same critical exponent of 1
2 .
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Dilute loop model

Evaluating the summation over labels δ

W ev
m (g , α) =

∑
(T ,δ)∈T̃ ev

m

gV (T )α|δ| =
∑
T∈Tm

gV (T )
m∏
i=0

1
2

[
(1 + α)Vi (T ) + (1− α)Vi (T )

]
.

Recalling

Zdi (g , α) =
∞∑

m=0

2m+1W ev
m (g , α).

Unlike the previous case, this partition function cannot be interpreted as a
simple shift to the coupling of the pure CDT partition function.

Determining the critical behaviour we turn to the transfer matrix.
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Dilute loop model

Expressing the partition function in terms of the transfer matrix

Zdi (g , α) = 1 +
∞∑

m=1

〈
vdi (g , α)

∣∣(T di (g , α)
)m−1∣∣vdi (g , α)

〉
.

The operator T di admits the factorisation

T di (g , α) = 2DKdi (g , α),

where
Dr ,s =

δr ,s
r
,

Kdi
r ,s(g , α) =

1

2

(r + s − 1)!

(r − 1)!(s − 1)!

[
(1+α)r+(1−α)r

] 1
2
[
(1+α)s+(1−α)s

] 1
2 g

r+s
2 .

The partition function can be re-expressed as

Zdi (g , α) = 1 +
∞∑

m=1

〈
v
∣∣D 1

2
(
2D

1
2KdiD

1
2
)m−1

D−
1
2

∣∣v〉.
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Dilute loop model

Various facts:

The operator D
1
2KdiD

1
2 is analytic on the disk

Dα =
{

(g , α) ∈ C2 | |g | < 1
4(1+|α|)

}
,

possessing an orthonormal set of eigenvectors {|w (m)(g , α)〉 |m ∈ N} and
a corresponding set of eigenvalues {λm(g , α) |m ∈ N}. There exists a
largest eigenvalue λ1(g , α) that is an increasing function of g . Defining

λ1(α) := lim
g↗ 1

4(1+α)

λ1(g , α),

the endpoints of λ1(α) over α ∈ [0, 1] are given by

λ1(0) = 1, λ1(1) =
1

2
.
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Dilute loop model

These facts facilitate the following calculation:

Zdi (g , α)− 1 =
∞∑

m=1

〈
v
∣∣D 1

2
(
2D

1
2KdiD

1
2
)m−1

D−
1
2

∣∣v〉
=

∞∑
m,n=1

〈
v
∣∣D 1

2
(
2D

1
2KdiD

1
2
)m−1∣∣w (n)

〉〈
w (n)

∣∣D− 1
2

∣∣v〉
=

∞∑
m,n=1

(2λn)m−1
〈
v
∣∣D 1

2

∣∣w (n)
〉〈
w (n)

∣∣D− 1
2

∣∣v〉
=
∞∑
n=1

〈
v
∣∣D 1

2

∣∣w (n)
〉〈
w (n)

∣∣D− 1
2

∣∣v〉
1− 2λn

≥ c2

1− 2λ1
−
∥∥D 1

2 v
∥∥∥∥D− 1

2 v
∥∥

1− 2λ2

where we run into trouble for λ1(g , α) = 1
2 !
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Dilute loop model

Selecting a sufficiently small α such that λ1(α) > 1
2 the critical coupling of

the dilute loop model gdi
c (α) is uniquely given by the equation

λ1
(
gdi
c (α), α

)
=

1

2
, where gdi

c (α) <
1

4(1 + α)
.

Consider an 0 < α ≤ 1 such that λ1(α) = 1
2 , the above arguments break

down as it implies

gdi
c (α) =

1

4(1 + α)
, gdi

c (α) /∈Dα.

Thus we have the two possibilities

(i) λ1(α) = 1
2 for α = 1, the constraint holds for all α ∈ [0, 1).

(ii) λ1(α) = 1
2 for α ∈ [α0, 1] α0 < 1, suggesting a phase transition.
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Dilute loop model

Let us now consider the critical exponent of the dilute loop model. From
the previous lower bound we can conclude for g close to gdi

c (α), we have

C1(α)

gdi
c (α)− g

≤ Zdi (g , α).

Establishing an upper bound we define

Zper
m (g , α) := tr

(
T di (g , α)

)m−1
, m ≥ 2

and identify the inequality

Zdi
m (g , α) ≤ 2Zper

m+1(g , α), m ≥ 1

m − 1 −→ m
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Dilute loop model

Applying the inequality

Zdi
m (g , α) ≤ 2Zper

m+1(g , α) ≤ 2
(
trT di (g , α)

)m
,

to the full partition function

Zdi (g , α) ≤ 1 +
∞∑

m=1

2m+1
(
tr D

1
2Kdi (g , α)D

1
2
)m

= 1 +
∞∑
n=1

4λn(g , α)

1− 2λn(g , α)
,

we have an upper bound for the partition function for g close to gdi
c (α)

C1(α)

gdi
c (α)− g

≤ Zdi (g , α) ≤ C2(α)

gdi
c (α)− g

.

It follows that for α small, the critical exponent of the dilute loop
model is −1! Inducing a shift from 1

2 of the pure CDT model.

Accompanying this shift is a change in Hausdorff dimension from
2 to 1, Durhuus and Ünel (2021).
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Conclusion
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Conclusion

Take home points:

Pure CDT and dense loop models possess identical critical behaviour

For α small, the critical behaviour of the dilute loop model is distinct
from pure CDT suggesting a non-trivial loop-triangulation coupling

This coupling induces a change in Hausdorff dimension from 2 to 1

Future direction:

Examine λ1(α) further to investigate the presence of α0

Analyse a generalisation of the dilute model where we introduce a
new parameter γ as follows:

:= g

(
+ γ

1
2 + α

1
2

[
+

])
Consider other loop models on triangulations incorporating a braid
e.g the BMW algebra
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