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Path integral formulation

Quantum field theory admits a description in terms of the path integral:

— (F) = / 'D(pF[go]eis[‘p]
Xi—r Xf

Xavier Poncini Loop models on causal triangulations April 15, 2021



Path integral formulation

Quantum field theory admits a description in terms of the path integral:

— (F) = / 'D(pF[go]eis[‘p]
Xi—r Xf

Constructing a naive quantum theory a gravity, let's just perform these
calculations on a co-evolving background manifold:
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Path integral formulation

Quantum field theory admits a description in terms of the path integral:

— (F) = / 'D(pF[go]eis[‘p]
Xi—r Xf

Constructing a naive quantum theory a gravity, let's just perform these
calculations on a co-evolving background manifold:

Not generally renormalisable! U
generaty 4
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Causal dynamical triangulations

Causal dynamical triangulations (CDT) is an approach to quantum gravity
that offers a reasonable way to compute the path integral:

(F) = / DgDyFlg, ¢Sl —+ 3" F[T, ]eSIT 1
Xi—r Xf 7—7(‘0

© Define the manifold as a triangulation
@ Sum over all possible triangulations

© Limit the volume of each simplex to zero .
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Causal dynamical triangulations

Causal dynamical triangulations (CDT) is an approach to quantum gravity
that offers a reasonable way to compute the path integral

(F) = / DgDoF[g, ple®E¥ — 3 " FIT, ¢]e”77]
Xi—>Xf

Ty
. . . . .
@ Define the manifold as a triangulation e
< :
@ Sum over all possible triangulations —a~v—
© Limit the volume of each simplex to zero ;
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Causal dynamical triangulations

Causal dynamical triangulations (CDT) is an approach to quantum gravity
that offers a reasonable way to compute the path integral

(F) = / DgDyFlg, ple®E = 3 " FIT, p]e”l74
Xi—>Xf

T.e
@ Define the manifold as a triangulation A‘I'A\?f\‘
@ Sum over all possible triangulations e
© Limit the volume of each simplex to zero .
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Models J
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Pure CDT model

A causal triangulation of a sphere is defined by a sequence of circular
graphs (cycles) So, S1, ..., Sm, Sm+1, where m € N is the height

such that the annulus between two cycles is triangulated. Space-like
edges are coloured red, while time-like edges are coloured black.

g
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Pure CDT model

Each triangulation of the sphere admits a unique map to the plane defined
by the sequence vo, v1,..., Vm, Vmt1 :
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Pure CDT model

For C € Cp,, denote |Sk| as the number of space-like edges per cycle and
|C| := "L, |Sk| the total number of space-like edges in C.

Va

V3

v3 |S5] =11
v V2, 1Sl =7
Vi Vi ‘Sll =5

Yo

The pure CDT partition functions are:
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Dense loop model

Elementary triangles in each configuration C € C,, are replaced with:
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Dense loop model

Configurations of the dense loop model can be uniquely expressed by the
node notation:

Vel Vel AcA e\
Returning to our previous example:

V4 Vs

V3w

N y V3 V3 mle. NS v3
1) 1%} 7> V2 V2
vi vi Vi Vi
Vo
Each space-like edge can either be marked or unmarked. U
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Dense loop model

For L € £%, denote £(Sy) as the number of space-like edge intersections
per cycle and /(L) := ZmH ¢(Sk) the total number of intersections in L.

Va

v =g K Rt 1 V3 |Ss| =11, {(S3) =
V2 Vay ‘S2| =7, Z(SZ) =
vi %1 ‘Sll = 57 Z(SI) =

Yo

The dense loop model partition functions are:

Zde g’ sze g, ), Zde g’ Z g Z(L)

LeLde U
N
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Dilute loop model

Elementary triangles in each configuration C € C,, are replaced with:
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Dilute loop model

Configurations of the dilute loop model can be expressed using the node

VA R VAR AN v/
(AL A (AA-A

Returning to our previous example:
V4

V3

v i O N

Vi

V3 V3

V3

v2 — v2

V2

Vi Vi

Vi

Yo Yo

The loops are in 2™+1 to 1 correspondence with the nodes. There also U
exists a condition for nodes on each layer: #,(e) € 2N, 1 < k < m.
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Dilute loop model

Configurations of the dilute loop model can be expressed using the node

VA R VAR AN v/
(AL A (AA-A

Returning to our previous example:
V4

V3

v i O N

Vi

V3 V3

V3

v2 — v2

V2

Vi Vi

Vi

Yo

The loops are in 2™+1 to 1 correspondence with the nodes. There also U
exists a condition for nodes on each layer: #,(e) € 2N, 1 < k < m.
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Dilute loop model

For L € £% denote £(Sk) as the number of space-like edge intersections
per cycle and /(L) := ZmH ¢(Sk) the total number of intersections in L.

v3 v3 [S3| =11, £(S3) =
v D N v, 1S91=7, U(S) =
v Vi ‘Sll =5, 5(51) =

Yo

The dilute loop model partition functions are:

Z% (g, Z Z3(g.a), Z3(g.a):= ) gt

Lecd U
N
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Critical behaviour

Having defined partition functions relevant to each model. These objects
need not be well defined over the entire parameter space of g,a € C.
That is there may exist a critical coupling g. for each model such that

Convergent, |g| < g
ZP(g) = { Critical point, g =g

Divergent, g > g,

Convergent, |g(a)| < ge(w)
Z*(g,a) =  Critical curve, g(a) = gc(a)
Divergent, gla) > gc(a),

where x € {de, di}. Determining the critical coupling allows one to U
establish the domain over which the model is well-defined. N
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Tree correspondences )
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Planar trees

Let 7, denote the set of height m planar trees. An example tree:

Denote Vi (T) the set of vertices of T € Tp, with distance k from root and
V(T) the vertex set of T excluding the root

Note that V(T) is equal to the number of edges in T. U
N
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Labelled Planar trees

Let %m denote the set of height m labelled planar trees
T = {(T,0)| T € Tm, 6: V(T) —{0,1}},

an example:

We define the labelling characteristics

ya|;:zm:5k, Si= > 6(v), k=1,....m
k=1

ve Vk(T)

and the restricted set of labelled trees

T .= {(T,8) € Tm |6 € 2Ng, k = 1,...,m}. \g
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Tree partition functions

To each set of trees T,,, 7~'m and ’7',5", we associate the partition functions

W(g) = Z Wm(g)a Wm(g) = Z gV(T),
m=0 TETm

W(g,a) =Y Wnlg.a), Wnlg.a):= > g"Mall
m=0

(T,6)ETm
W)=Y W), Wilga)= Y 8"l
m=0 (T0)eTe

recall V(T) count edges of a tree T, || count the number of 1 labels.

g
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Pure CDT model bijection

There exists a bijective correspondence between triangulations and trees:
Y :Cm—Tm

@ Remove all space-like (red) edges

@ For each vertex, remove the leftmost outward-pointing time-like
(black) edge

.

Vo

-8
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Dense loop model bijection

There exists a bijective correspondence between triangulations and trees:
L% T

@ Remove all space-like (red) edges

@ For each vertex, remove the leftmost outward-pointing time-like
(black) edge

@ Label each vertex to the right of an intersected space-like edge

~ ~

st
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Dilute loop model correspondence

There exists a 2™ to 1 correspondence between triangulations and trees:
T opdi Tev
ViLyn =Ty

@ Remove all space-like (red) edges

@ For each vertex, remove the leftmost outward-pointing time-like
(black) edge

@ Label each vertex to the right of an intersected space-like edge
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Relating partition functions

@ Causal triangulations and planar trees:

@ Dense loop causal triangulations and labelled planar trees:

Z%(g,a) = W(g,o?)

@ Dilute loop causal triangulations and even labelled planar trees:

Z%g,a) =1+ > 2™WS (g, )

w1 g’
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Transfer-matrix formalism J
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Preliminary result

Consider an arbitrary triangulation Ay of a single time-slice with boundary
lengths Iy = |Sk| and lky1 = |Sk+1l:

1 2 Jer1

Sk+1 3

I Vi

applying a sequence of local flips

—

)

Ak can be transformed into any other triangulation possessing boundary
lengths /x and /x4+1. In particular the standard triangulation:

1 2 lesr
Skt 3 =

I Vi
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Preliminary result

Extending the flip operation to the dense model

A AN ¥ MR

A-N B—N -~ BN
AN BN PN BN

It follows:
(i) The number of possible dense/dilute, loop configurations on a single
time-slice only depends on the boundary lengths /x and /fx41.
(i) The flip operations applied to a loop configuration leave the
number of space-like edges and intersections invariant.

Consequently, the details of the triangulation decouple from the loop g,
configurations.
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Transfer-matrix

We denote the combinatorial operator generating all infinitesimal
configurations as the transfer-matrix, whose elements are given by:

Gu=_ Coeff, ( N / ADN ) - <d+5_ 1) Coeff, <

d;,u;

where x € {p, de, di}, the binomial coefficient counts distinct
triangulations possessing d = >"7_; d; lower and u = >""_; u; upper
space-like edges, Coeff, counts weights associated with the expansions:

P A\ =8/\
de:A:zg(A—kaA)
di:A:zg(A%—g—i—a;[A—i-&]) g
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Transfer matrix

N d+u—
Td,u = ( U

Expanding the coefficient for each x € {p, de, di}

d+u—1\ dtu
T;;’u:< ‘ >g2

d+u—1 dtu
e = (T e+ a2

= (707 e - et )+ (et-a))

g
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Transfer matrix

Defining the vectors relevant to each model x € {p, de, di}, the k'h
components of |[v*(g,a)) and (v*(g,a)|, are
vi(e. ) = Coeft, (). (vile, )] := Coefty (i )
The m height partition function of each model can be written
Zy(g.a) = (v*(g,a)| T} |v* (g, 0)).

Diagrammatically this corresponds to

Xavier Poncini
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Critical behaviour J
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Pure CDT model

The planar tree partition function admits the recursion and solution

W) = g Ve =

Given the relation
ZP(g)=W(g), D={geCllgl<3}

it follows that the pure CDT model is analytic on the disk D with g. = %.
The partition function admits an expansion

() -2y (-1 (5=5)

n=0 &c

and consequently has a critical exponent of % With the Hausdorff U
dimension shown to be 2 almost surely, Durhuus et. al. (2010).
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Dense loop model

Evaluating the summation over labels §

Walg,a)= Y g"Mall= 3 (g1 + )" = Wanlg(1 + a)).

(T,8)ETm T€Tm
Recalling
Z%(g,a) = W(g,a?), ZP(g) = W(g),

the pure CDT partition function is equal to the dense partition function
under the shift in coupling g — g(1 + a?). It follows that the dense loop
model is analytic on the disk

D, = {(g, ECZHg\<m}

y 1 g
and possesses the same critical exponent of 3. ./
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Dilute loop model

Evaluating the summation over labels §

m
W (g0)= 3" Mol =3 gV [+ )T 4 (1— )],
(T,(S)ET,,E;V TETm i=0

Recalling
Z%(g,0) =Y 2™ W (g, q).
m=0

Unlike the previous case, this partition function cannot be interpreted as a
simple shift to the coupling of the pure CDT partition function.
g

Determining the critical behaviour we turn to the transfer matrix.
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Dilute loop model

Expressing the partition function in terms of the transfer matrix
Z%(g,0) =1+ Z (g, )| (TU(g. )" v (g, ).

The operator T9 admits the factorisation

T%(g,a) = 2DK¥(g, a),

where D — &
y (r+s—-1) o1
Kis(g,a) = 5 [(1—1—(1) +(1—a)" ]2 [(1+a) +(1-a)® ]2

( 1i(s - 1)!

The partition function can be re-expressed as

Z%(g,a) =1+ <v D%(2D%KdiD%)m—1D,% v>.
=" v 8

m=1
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Dilute loop model

Various facts:

The operator D2K9 D3 is analytic on the disk

Do = {(g:0) € C*|lg] < grrian -

possessing an orthonormal set of eigenvectors {|w(™ (g, a))| m € N} and
a corresponding set of eigenvalues {A\n,(g, @) | m € N}. There exists a
largest eigenvalue A\1(g, «) that is an increasing function of g. Defining

X1(04) = I|m1 Al(gaa)v
&8/ awra)

the endpoints of A\1(a) over a € [0, 1] are given by
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Dilute loop model

These facts facilitate the following calculation:

Z%(g,a) — 1= Z( D2 (2D2 K% D3)" D3 |v)

m=1
— Z <V‘D%(2D%KdiD%)m_1‘W(n)><w(”)’D_%‘V>
m,gozl 1 |
= > (@\)" Hv[D2 WY (WM |D72v)
m,n=1
5 (D ) w0 )
1-2\,
n=1 .
2 |pav[lp3v|
-1 —2>\1 N 1 —2A2
where we run into trouble for A\i(g,a) = % g’
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Dilute loop model

Selecting a sufficiently small a such that A\;(a) > % the critical coupling of
the dilute loop model g («) is uniquely given by the equation

1
)

) 1 .
Mi(gf(a),0) = 5, where gf(a) <

Consider an 0 < o < 1 such that A;(@) = 3, the above arguments break
down as it implies

. 1 .

di di

- D,.

e0) = gy E@ED

Thus we have the two possibilities

(i) A1(a) = 3 for v = 1, the constraint holds for all « € [0, 1).

(ii) A1(a) =3 for o € [, 1] g < 1, suggesting a phase transition. U
N
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Dilute loop model

Let us now consider the critical exponent of the dilute loop model. From
the previous lower bound we can conclude for g close to g&(a), we have

Cl(a)
gd(a)—¢g
Establishing an upper bound we define
2k (g,0) = tr(T¥(g,0))" ", m22
and identify the inequality

Z%(g, o) <27P (g,a), m=>1

< Z%g,q).
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Dilute loop model

Applying the inequality
Z% (g, ) <220, (g,0) < 2(tr T¥(g, )",

to the full partition function

di — il 1 di 1ym —  4An(g.0)
V4 (g,a)§1+z2 tr D2KY (g, a)D?2) :1+Z#n(ga)’
m=1 n=1 ’

we have an upper bound for the partition function for g close to g(«)
< Z%(g,a) <

G(a) Go(a)
gd(e) — g " gd(a)—g
It follows that for a: small, the critical exponent of the dilute loop
model is —1! Inducing a shift from % of the pure CDT model.
Accompanying this shift is a change in Hausdorff dimension from o
2 to 1, Durhuus and Unel (2021).
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Conclusion J
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Conclusion

Take home points:
@ Pure CDT and dense loop models possess identical critical behaviour

@ For « small, the critical behaviour of the dilute loop model is distinct
from pure CDT suggesting a non-trivial loop-triangulation coupling

@ This coupling induces a change in Hausdorff dimension from 2 to 1
Future direction:
e Examine \;(a) further to investigate the presence of g

@ Analyse a generalisation of the dilute model where we introduce a
new parameter v as follows:

A=A A A A)

o Consider other loop models on triangulations incorporating a braid
e.g the BMW algebra U
N
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