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Causal dynamical triangulations

Causal dynamical triangulations (CDT) is an approach to quantum gravity
that offers a tractable way to compute the path integral

⟨F ⟩ =
∫
xi→xf

DgDφF [g, φ]e iS[g,φ] →
∑
T ,φ

F [T , φ]e iS[T ,φ]

1 + 1-dimensional

[Israiel and Linder 12’]

2 + 1-dimensional

[Budd 12’]

Work in progress!
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Models

Pure CDT model

A causal triangulation of a sphere is defined by a sequence of circular
graphs S0, S1, . . . ,Sm, Sm+1, where m ∈ N is the height

S0
S1 S2 S3

S4

such that the annulus between two cycles is triangulated. Space-like
edges are coloured red, while time-like edges are coloured black.

Xavier Poncini Loop models on CDT ANZAMP 2022 4 / 19



Models

Each triangulation of the sphere admits a unique map to the plane defined
by the sequence v0, v1, . . . , vm, vm+1 :

v4

v0

v1

v2

v3 ←→

v0

v1

v2

v3

v4

v1

v2

v3
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Models

Dense loop model

Elementary triangles in each configuration C ∈ Cm are replaced with:

Sk+1

Sk

The resulting set of dense loop model configurations is denoted Ldem .

v4

v0

v1

v2

v3 ←→

v0

v1

v2

v3

v1

v2

v3

v4
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Models

Dense loop configurations can be uniquely expressed by the node notation:

↔ , ↔ , ↔ , ↔ .

Returning to our previous example:

v0

v1

v2

v3

v1

v2

v3

v4

←→

v0

v1

v2

v3

v1

v2

v3

v4

Each space-like edge can either be marked or unmarked.
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Models

Dilute loop model

Elementary triangles in each configuration C ∈ Cm are replaced with:
Sk+1

Sk
Sk+1

Sk

The resulting set of dilute loop model configurations is denoted Ldim .

v4

v0

v1

v2

v3 ←→

v0

v1

v2

v3

v1

v2

v3

v4
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Models

Dilute loop configurations can be expressed by the node notation:{
,

}
→ ,

{
,

}
→ ,{

,
}
→ ,

{
,

}
→ .

Returning to our previous example:

v0

v1

v2

v3

v1

v2

v3

v4

−→

v0

v1

v2

v3

v1

v2

v3

v4

The loops are in 2m+1 to 1 correspondence with the nodes. There also
exists a condition for nodes on each layer: #k( ) ∈ 2N, 1 ≤ k ≤ m.
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Models

Partition functions

For C ∈ Cm, denote by |C | the total number of space-like edges in C . The
pure CDT partition functions are:

Zp(g) :=
∞∑

m=0

Zp
m(g) , Zp

m(g) :=
∑
C∈Cm

g |C |.

For L ∈ L⋆m, denote by ℓ(L) the total number of loop-intersections in L.
The loop model partition functions are:

Z ⋆(g , α) :=
∞∑

m=0

Z ⋆
m(g , α) , Z ⋆

m(g , α) :=
∑
L∈L⋆

m

g |L|αℓ(L).

where ⋆ ∈ {de, di}. Having defined partition functions relevant to each
model. These functions need not be well defined for all g , α ∈ C.

Z •(g , α) =


Analytic, |g(α)| < gc(α)

Critical point/curve, g(α) = gc(α)

Divergent, g(α) > gc(α)

, • ∈ {p, de, di}
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Tree correspondences

Labelled planar trees

Let Tm, T l
m and T el

m denote the set of height m unlabelled, (binary)
labelled and even labelled planar trees respectively. For example:

∈ T3 ∈ T l
3 ∈ T el

3

For a tree T , denote by V (T ) and δ(T ) the total number of vertices and
labels respectively. To each set of trees Tm, T l

m and T el
m , we associate the

partition functions

W (g) :=
∞∑

m=0

Wm(g), Wm(g) :=
∑
T∈Tm

gV (T ),

W ⋄(g , α) :=
∞∑

m=0

W ⋄
m(g , α), W ⋄

m(g , α) :=
∑
T∈T ⋄

m

gV (T )αδ(T )

where ⋄ ∈ {l , el}.
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Tree correspondences

Tree correspondences

Theorem

There exist correspondences between triangulations and trees:

ψ : Cm → Tm, ψ̃ : Ldem → T l
m, ψ̂ : Ldim → T el

m

where ψ and ψ̃ are 1 to 1, while ψ̂ is 2m+1 to 1. These are defined by:

Remove all space-like (red) edges

For each vertex, remove the leftmost outward-pointing time-like
(black) edge

Label each vertex to the right of an intersected space-like edge

ψ; ←→ ←→

Xavier Poncini Loop models on CDT ANZAMP 2022 12 / 19



Tree correspondences

ψ̃; ←→ ←→

ψ̂; −→ ←→

It follows that the partition functions are related by

Zp(g) = W (g), Zde(g , α) = W l(g , α2), Zdi (g , α) =
∞∑

m=0

2m+1W el
m (g , α)
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Transfer-matrix formalism

Transfer-matrix

The transfer-matrix is the combinatorial operator generating all
infinitesimal configurations, the matrix elements are given by:

Td ,u :=
∑
i ,di ,ui

Coeff
(

d1

u1

d2

un

)
Coeff collects weights associated with the expansion:

:= g

(
+ + α

1
2

[
+

])
:= g

(
+ + α

1
2

[
+

])
Defining the vectors

⟨v | :=
∑
k≥1

Coeff
(

k

)
, |v⟩ :=

∑
k≥1

Coeff
(

k

)
,

the m height partition function of each model can be written

Zdi
m (g , α) =

〈
v
∣∣Tm−1

∣∣v〉.
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Critical behaviour

Pure CDT and dense loop model

Lemma

The planar tree partition functions admit the solution

W (g) =
1−
√
1− 4g

2g
, W l(g , α) =

1−
√

1− 4g(1 + α)

2g(1 + α)

Recall the relations

Zp(g) = W (g), Zde(g , α) = W l(g , α2),

the pure CDT and dense loop model have the critical couplings gc = 1
4

and gc(α) =
1

4(1+α2)
, respectively. Expanding the partition functions

Zp(g) = 2
∑
n≥0

(−1)n
(gc − g

gc

) n
2
, Zde(g , α) = 2

∑
n≥0

(−1)n
(gc(α)− g

gc(α)

) n
2
,

both have a critical exponent of 1
2 . With the Hausdorff dimension shown

to be 2 almost surely, Durhuus, Jonsson and Wheater (2010).
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Critical behaviour

Dilute loop model

The dilute model partition function cannot be related to the pure CDT
model. Determining the critical behaviour we turn to the transfer-matrix.

Zdi (g , α) =
∞∑

m=0

2m+1W el
m (g , α) = 1 +

∞∑
m=1

〈
vdi

∣∣Tm−1
∣∣vdi〉.

The operator T admits the factorisation

T(g , α) = 2DK (g , α),

Proposition

The operator D
1
2KD

1
2 is diagonalisable and analytic on the disk

Dα =
{
(g , α) ∈ C2 | |g | < 1

4(1+|α|)
}
,

There exists a largest eigenvalue λ1(g , α), it is an increasing function of g .
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Critical behaviour

Corollary

For C ′(α) > 0, the dilute model partition function satisfies

Zdi (g , α) ≥ C ′(α)

1− 2λ1
− B(g , α),

where B(g , α) is bounded for g close to gdi
c (α).

With α ∈ [0, 1] define

λ1(α) := lim
g↗ 1

4(1+α)

λ1(g , α), λ1(0) = 1, λ1(1) =
1

2
.

For α such that λ1(α) >
1
2 the critical coupling gdi

c (α) follows from

λ1
(
gdi
c (α), α

)
=

1

2
, where gdi

c (α) <
1

4(1 + α)
.

There exist two possibilities:

(i) λ1(α) =
1
2 for α = 1, the constraint holds for all α ∈ [0, 1).

(ii) λ1(α) =
1
2 for α ∈ [α0, 1] 0 < α0 < 1, suggesting a phase transition.
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Critical behaviour

Critical exponent

Establishing an upper bound we observe Zdi
m (g , α) ≤ 2

(
trT(g , α)

)m
.

Theorem

For α real and sufficiently small, there exist C1(α),C2(α) > 0 such that

C1(α)

gdi
c (α)− g

≤ Zdi (g , α) ≤ C2(α)

gdi
c (α)− g

.

It follows that there exists an α such that the critical exponent of the
dilute loop model is −1! Inducing a shift from 1

2 of the pure CDT model.

Accompanying this shift is a change in Hausdorff dimension from
2 to 1, Durhuus and Ünel (2021).
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Conclusion

Conclusion

Summary:

Pure CDT and dense loop models possess identical critical behaviour

For α small, the critical behaviour of the dilute loop model is distinct
from pure CDT suggesting a non-trivial loop-triangulation coupling

This coupling induces a change in Hausdorff dimension from 2 to 1

Future direction:

Examine λ1(α) further to investigate the presence of α0

Analyse a generalisation of the dilute model introducing a γ:

:= g

(
+ γ

1
2 + α

1
2

[
+

])
:= g

(
+ γ

1
2 + α

1
2

[
+

])
Consider other loop models on triangulations incorporating a braid
e.g the Brauer and BMW algebras
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Thank you!
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