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Causal dynamical triangulations

Causal dynamical triangulations (CDT) is an approach to quantum gravity

that offers a tractable way to compute the path integral
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Pure CDT model

A causal triangulation of a sphere is defined by a sequence of circular
graphs Sg, 51, ..., Sm, Smi1, where m € N is the height

such that the annulus between two cycles is triangulated. Space-like
edges are coloured red, while time-like edges are coloured black.
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Models

Each triangulation of the sphere admits a unique map to the plane defined
by the sequence vo, v1,..., Vm, Vmt1 :

V4
. L e e e T e S N V3
.
< v V2
Vi Vi
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Models
Dense loop model

Elementary triangles in each configuration C € C,, are replaced with:

T G y V3
V2 V2
Vi Vi
-
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Dense loop configurations can be uniquely expressed by the node notation:

VeV VeV A« Lie AN
Returning to our previous example:

vy V4

e YA S BN e Y Y V3 V3 e o v3

V2 V2

~+

V2 V2

Vi Vi Vi

Vi

Yo

Each space-like edge can either be marked or unmarked.
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Models
Dilute loop model
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Dilute loop configurations can be expressed by the node notation:

V3

V2

Vi

(V. v}~V
AN AL A

Returning to our previous example:

Va

Yo

V3

V2

Vi

V3

V2

Vi

(V. v}~
W/ WAV IVAN

Yo

V3

V2

Vi

The loops are in 2™*! to 1 correspondence with the nodes. There also
exists a condition for nodes on each layer: #(e) € 2N, 1 < k < m.

Xavier Poncini

Loop models on CDT

ANZAMP 2022



Dilute loop configurations can be expressed by the node notation:

(V. v}~V
AN AL A

Returning to our previous example:

V3

V2

Vi

Va

V3 V3

2] — v

Vi Vi

(V. v}~
W/ WAV IVAN

Yo

V3

V2

Vi

The loops are in 2™*! to 1 correspondence with the nodes. There also
exists a condition for nodes on each layer: #(e) € 2N, 1 < k < m.

Xavier Poncini

Loop models on CDT

ANZAMP 2022



Partition functions

For C € Cp,, denote by |C| the total number of space-like edges in C. The
pure CDT partition functions are:

)= Zh(g),  Zh(g):=)_ &
m=0 CeCnm
For L € L},, denote by £(L) the total number of loop-intersections in L.

The loop model partition functions are:

o
=Y Zhg.a), Zh(g.o):= Y gltafb.
m=0

LeLly,

where x € {de, di}. Having defined partition functions relevant to each
model. These functions need not be well defined for all g, € C.

Analytic, lg(a)| < gc(a)
Z*(g,a) =  Critical point/curve, g(a) = gc(a) , e € {p,de,di}
Divergent, gla) > gc(a)
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Tree correspondences

Labelled planar trees

Let T, 7., and T;¢' denote the set of height m unlabelled, (binary)
labelled and even labelled planar trees respectively. For example:

For a tree T, denote by V/(T) and 6(T) the total number of vertices and

labels respectively. To each set of trees Tm, 7. and T, we associate the
partition functions

i Win(g Win(g):= > &7,

OOmZO TeTm
Wog,a) =Y Wilg.a), Wilg.a):= Y g"(MadMD
m=0 TETS

where ¢ € {/, el}.
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Tree correspondences

Tree correspondences

Theorem

There exist correspondences between triangulations and trees:

$:Cm— Ty Ly = Th LT

where 1 and ¥ are 1 to 1, while zﬁ is 21 to 1. These are defined by:

@ Remove all space-like (red) edges

@ For each vertex, remove the leftmost outward-pointing time-like
(black) edge

@ Label each vertex to the right of an intersected space-like edge

.
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Tree correspondences

It follows that the partition functions are related by

7P(g) = W(g), Z%(g,0) = W'(g,0?), Z29(g,0) =) 2" Wg(g, )

m=0
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Transfer-matrix formalism

Transfer-matrix

The transfer-matrix is the combinatorial operator generating all
infinitesimal conf|gurat|ons the matrix elements are glven by:

i dl7ul
Coeff collects weights associated with the expansion:

A=A+ A A A
Vs (Ve o v v))

Defining the vectors
(v]:= Z Coeft ( k) , lv) == Z Coeft (

k>1 k>1
the m height partition function of each model can be written

Zn (g, @) = (v[T™Hv).
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Critical behaviour

Pure CDT and dense loop model

The planar tree partition functions admit the solution
1—4/1-4g 1—/1—-4g(l+«
wig)= V=18 Cto)

) Wl(g7a) =

Recall the relations

ZP(g) = W(e), Z%(g,a) = W'(g,a?),
the pure CDT and dense loop model have the critical couplings g. = %
and gc(a) = m, respectively. Expanding the partition functions

0 =23 () 2 -2 (S0)

both have a critical exponent of % With the HausdorfF dimension shown
to be 2 almost surely, Durhuus, Jonsson and Wheater (2010).
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Critical behaviour

Dilute loop model

The dilute model partition function cannot be related to the pure CDT
model. Determining the critical behaviour we turn to the transfer-matrix.

[e.o]

Zdi(g,Oé) — Z 2m+1Wel g’ =14+ Z <le Tm= 1| d1>

m=0

The operator T admits the factorisation

T(g,a) =2DK(g, ),

Proposition

The operator D3KD3 is diagonalisable and analytic on the disk
Do = {(g:0) € C*|lg] < grran -

There exists a largest eigenvalue A\1(g, ), it is an increasing function of g.
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Critical behaviour

For C'(«) > 0, the dilute model partition function satisfies

: C'(e)
di > o

where B(g, a) is bounded for g close to g(a).

With a € [0, 1] define

Xl(oz) = |im1 Al(g,a), )\1(0) = 1, )\1(1) = —.
&/ qira)

For a such that A\;(a) > % the critical coupling gZ/(a) follows from

) 1 : 1
A1 (gg’(a), o) = 5 where g% () < ita)
There exist two possibilities:
(i) M1(a) =1 for a = 1, the constraint holds for all o € [0, 1).
(i) A1(a) =2 for o € [g, 1] 0 < ag < 1, suggesting a phase transition.
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Critical behaviour

Critical exponent

Establishing an upper bound we observe Z% (g, ) < 2(trT(g, a))”

For « real and sufficiently small, there exist Ci(a), Co(«) > 0 such that

Cz(a)

Cl(a) < Zdi(g,a) <=

gdi(a) — g gdifa) — g

It follows that there exists an « such that the critical exponent of the
dilute loop model is —1! Inducing a shift from % of the pure CDT model.

Accompanying this shift is a change in Hausdorff dimension from
2 to 1, Durhuus and Unel (2021).
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Conclusion

Conclusion

Summary:
@ Pure CDT and dense loop models possess identical critical behaviour
@ For « small, the critical behaviour of the dilute loop model is distinct
from pure CDT suggesting a non-trivial loop-triangulation coupling
@ This coupling induces a change in Hausdorff dimension from 2 to 1
Future direction:
e Examine \1(«) further to investigate the presence of g
@ Analyse a generalisation of the dilute model introducing a ~:

A=A A A A)
V = (Vi o (v v

o Consider other loop models on triangulations incorporating a braid
e.g the Brauer and BMW algebras
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Thank you!
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